1心血管再生研究所,歌德大学法兰克福大学,西奥多·斯特恩·凯7,德国法兰克福AM,德国法兰克福。2个心肺研究所,德国法兰克福AM。 3 DZHK,Site Rhein/Main,Frankfurt Am Main,德国。 4肺部健康研究所。 Justus-Liebig-University Giessen,Aulweg 132,Giessen,德国,Giessen和Marburg Lung Center(UGMLC),德国肺部研究中心(DZL),Justus-Liebig University Giessen Giessen,Giessen,Giessen,Giessen,德国,德国。 6心脏诊断与治疗研究所,德国IKDT GMBH柏林。 7,法兰克福大学法兰克福大学医院心脏病学系。 德国法兰克福AM。 8 DZHK心血管成像中心实验和转化心血管成像研究所,德国法兰克福大学歌德大学。2个心肺研究所,德国法兰克福AM。3 DZHK,Site Rhein/Main,Frankfurt Am Main,德国。4肺部健康研究所。 Justus-Liebig-University Giessen,Aulweg 132,Giessen,德国,Giessen和Marburg Lung Center(UGMLC),德国肺部研究中心(DZL),Justus-Liebig University Giessen Giessen,Giessen,Giessen,Giessen,德国,德国。 6心脏诊断与治疗研究所,德国IKDT GMBH柏林。 7,法兰克福大学法兰克福大学医院心脏病学系。 德国法兰克福AM。 8 DZHK心血管成像中心实验和转化心血管成像研究所,德国法兰克福大学歌德大学。4肺部健康研究所。Justus-Liebig-University Giessen,Aulweg 132,Giessen,德国,Giessen和Marburg Lung Center(UGMLC),德国肺部研究中心(DZL),Justus-Liebig University Giessen Giessen,Giessen,Giessen,Giessen,德国,德国。6心脏诊断与治疗研究所,德国IKDT GMBH柏林。7,法兰克福大学法兰克福大学医院心脏病学系。 德国法兰克福AM。 8 DZHK心血管成像中心实验和转化心血管成像研究所,德国法兰克福大学歌德大学。7,法兰克福大学法兰克福大学医院心脏病学系。德国法兰克福AM。8 DZHK心血管成像中心实验和转化心血管成像研究所,德国法兰克福大学歌德大学。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 24 日发布。;https://doi.org/10.1101/2025.01.22.634193 doi:bioRxiv preprint
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 3 月 21 日发布。;https://doi.org/10.1101/2022.03.18.484953 doi:bioRxiv preprint
图1。(a)Berghia stephanieae和(b)Hermissenda opalescens中的线虫细胞中的特殊吞噬作用(即,在(a)berghia berghia opalescens中。(c)从Goodheart等人修改的广义CNIDOSAC示意图。2018 [14](根据CC by 4.0 Creative Commons许可)突出了Cnidosac的主要功能。(插图)线虫细胞(n)是由cnidosac(CS)内的cnidophages吞噬的。缩写:C,Cerata; CI,Cilia Tufts; CP,Cnidophage,DG,消化腺; E,Cnidosac的入口; EP,上皮; ex,从cnidosac退出;他,血细胞; m,肌肉; n,黑头囊。
致谢该项目是通过大学在纽约州布法罗大学的支持和罗斯威尔公园综合癌症中心流量和图像细胞仪共享资源而实现的。如果没有Maggie Vogel-Cryan,LVT和Beth Palka的出色技术支持,这些研究就无法完成。我们承认将生物者用于人物设计。
推荐引用推荐引用fadhil,al-shumoos,“工程THP-1细胞使纵向报告基因成像能够评估脱皮的脂肪组织水凝胶作为人单核细胞的递送平台”(2024)。电子论文和论文存储库。10645。https://ir.lib.uwo.ca/etd/10645
随着围产期护理的持续改善,可行的早产儿的数量正在逐渐增加,以及早产相关疾病的增加,例如坏死性小肠结肠炎,支气管肺发育异常,围产期脑脑损伤,预性脑病,预性过早以及SEPIS。由于早产儿的独特病理生理学,诊断和治疗这些疾病变得尤为具有挑战性,显着影响其生存率和长期生活质量。细胞外囊泡(EV)作为细胞间交流的关键介体,在这些疾病的病理生理学中起着重要的调节作用。由于其生物学特征,电动汽车可以作为早产相关疾病的生物标志物和潜在的治疗剂。本综述总结了电动汽车的生物学特性,它们与早产相关疾病的关系及其诊断和治疗的前景。evs面临临床应用的独特挑战和机会。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月15日。 https://doi.org/10.1101/2025.02.12.12.637580 doi:Biorxiv Preprint
摘要:细胞外囊泡的分泌,EVS,是原核生物和真核细胞的常见过程,用于细胞间交流,生存和发病机理。先前的研究表明,来自细菌纯培养物的上清液中的EV存在,包括革兰氏阳性和革兰氏阴性的聚糖降解肠道分子。但是,复杂微生物群落分泌的电动汽车的隔离和表征尚未清楚地报告。在最近的一篇论文中,我们表明,木材衍生的复杂β -mannan与常规饮食纤维具有结构性相似,可用于调节猪肠道肠道菌群的组成和活性。在本文中,我们研究了24小时在复合β -Mannan富集后,猪粪便菌群分泌的EV的产生,大小,组成和蛋白质组。使用透射电子显微镜和纳米颗粒跟踪分析,我们以165 nm的平均大小识别电动汽车。我们利用猪蛋白的基于质谱的元蛋白质蛋白基于猪蛋白的数据库,并从猪群中鉴定出355个元基因组组装的基因组(MAG),从而鉴定出303蛋白。对于从β -mannan生长的培养物中分离出来的EV,大多数蛋白质映射到两个MAGS MAG53和MAG272,分别属于梭菌和细菌。此外,具有第三次蛋白质的MAG为MAG 343,属于肠杆菌阶。在β -Mannan EV蛋白质组中检测到的最丰富的蛋白质参与了翻译,能量产生,氨基酸和碳水化合物转运以及代谢。总体而言,这项概念验证研究表明,从复杂的微生物群落中释放出的电动汽车的成功隔离。此外,电动汽车的蛋白质含量反映了特定微生物对可用碳水化合物源的响应。
在衰老和某些情况下,例如胚胎发育,伤口愈合以及癌症,衰老细胞等疾病在不同的病理生理功能中积累并发挥关键作用。长期以来的信念是,鉴于衰老细胞增殖的丧失,细胞衰老会降低正常细胞功能。在发现衰老相关的分泌表型(SASP)之后,这种观点彻底改变了,衰老细胞释放到微环境中。现在有积累的证据表明,细胞衰老还通过建立,增强或改变细胞身份来促进功能促进作用,这可能对病理生理产生有益或有害的影响。这些影响可能涉及增殖停滞和自分泌SASP的产生,尽管它们在很大程度上仍有待定义。在这里,我们提供了有关衰老的首次研究以及对衰老对细胞身份影响的新兴趋势的洞察力的历史概述。