摘要背景塔利米烯Laherparepvec(T-VEC)是一种经许可的疗法,可用于欧洲的IIIB-IVM1A期黑色素瘤患者,可注射,无法切除的转移性病变。批准基于黑色素瘤研究中的Oncovex关键试验,该试验还包括远处转移的患者,并证明总体反应率(ORR)为40.5%,完全反应(CR)率为16.6%。目的这项研究的目的是评估在现实生活中用T-VEC治疗的黑色素瘤患者的结果。基于来自奥地利,瑞士和德国南部10个黑色素瘤中心的数据的方法,我们进行了回顾性图表审查,其中包括88名患者(44名男性,44位女性),中位年龄为72岁(36-95岁)在2016年5月至2020年1月至2020年1月。结果88例符合分析的纳入标准。ORR为63.7%。38例(43.2%)显示CR,18(20.5%)的部分反应,8(9.1%)患有稳定的疾病,24例(27.3%)患者患有进行性疾病。中位治疗期为19周(范围:1-65),平均使用11剂(范围:1-36)。39(45.3%)患者发生了不良事件,大部分是轻度I级(64.1%)。 结论T-VEC现实生活中的队列治疗表现出很高的ORR和大量耐用CR。39(45.3%)患者发生了不良事件,大部分是轻度I级(64.1%)。结论T-VEC现实生活中的队列治疗表现出很高的ORR和大量耐用CR。
北京针对数据中心提出的严格电力提案使其领先于大多数区域市场;新加坡仍处于数据中心建设暂停阶段,政府正在寻找解决电力问题的方案。即使没有这样的规定,新设施的开发也已经蔓延到北京周边的天津和河北,甚至更远的山西和内蒙古。京津冀地区反而发展成为华北地区的数据中心枢纽。天津和河北不仅是灾难恢复设施的所在地,而且是更大的生态系统的一部分,其中有区域分配给超大规模云设施和可再生能源。最近的提案更有可能产生的影响是,它将加快北京小型设施的升级和整合,而严格执行法规将促进 PUE 优化并迫使供应商采用可再生能源。尽管如此,新的要求预计不会对运营造成重大阻力,因为北京的主机托管空间更为宝贵。世纪互联和万国数据等供应商在北京和上海的主机托管市场占有相当大的份额,处于令人羡慕的地位,因为进入这两个市场的门槛现在高得多。这种情况并非北京独有,在上海和其他主要数据中心枢纽也很普遍,因为中国这些主要市场的制约因素对超大规模自建数据中心来说也是一个挑战。
如何引用本文:Prem Krishna | Saheel Ahamed | Roshan Kartik “使用 Open CV 和 YOLO 的基于 AI 的 ATM 智能安全系统”发表在《国际科学研究与发展趋势杂志》(ijtsrd)上,ISSN:2456-6470,第 5 卷 | 第 4 期,2021 年 6 月,第 336-338 页,URL:www.ijtsrd.com/papers/ijtsrd41232.pdf 版权所有 © 2021 作者和国际科学研究与发展趋势杂志。这是一篇根据知识共享署名许可条款分发的开放获取文章(CC BY 4.0)(http://creativecommons.org/licenses/by/4.0)介绍众所周知,数字印度是许多创新和技术进步的成果。如今,ATM 中心的监控摄像头仅用于记录目的。如果发生任何盗窃活动,只有通过人类信息才能知道。然后警方将借助闭路电视记录展开调查。在某些情况下,小偷会遮盖或破坏摄像头,使其无法记录。众所周知,世界广泛使用自动视频监控系统,它在我们的日常生活中发挥着至关重要的作用,以加强对个人和基础设施的保护和安全。
我们与战士合作了解他们的运营需求,并将其转化为技术界可以理解的要求。我们的技术知识和独一无二的设施独特地定位了我们在整个科学和技术,研发,获取支持和车队支持的范围内的工作,以帮助将能力纳入战士的手中。为了使我们的船只和系统处于技术的最前沿,我们还在实验室环境中工作,以探索和发展未来的想法。我们有能力将战斗环境深入了解可能的技术领域,从而有效地对车队需求产生了有效的近期和遥远的响应能力。
1) 可比 EBITDA 基于 Fortum 和 Uniper 财务报表中定义的 Fortum 可比 EBITDA 和 Uniper 调整后 EBITDA。未考虑假设交易的影响。2) 基于 2019 年报告的发电量(Uniper 中的会计视图)。2019 年未合并。
展示了基于 SiC 原子级自旋中心能级交叉弛豫的全光学测温技术。该技术利用了三重基态 S=1 中心零场分裂的巨大热位移,光致发光无法检测到(所谓的“暗”中心)耦合到相邻的自旋 3/2 中心,这些中心可以进行光学极化和读出(“亮”中心),并且不需要射频场。EPR 用于识别缺陷。交叉弛豫线的宽度几乎比全光学测温中使用的激发态能级反交叉线的宽度小一个数量级,并且由于由激发态的寿命决定,因此无法显着减小。由于温度偏移和信号强度与激发态能级反交叉大致相同,交叉弛豫信号可以将温度测量的灵敏度提高一个数量级以上。温度灵敏度估计约为 10 mK/Hz^1/2,体积约为 1 μm^3,由扫描共聚焦显微镜中的聚焦激光激发决定。利用“亮”自旋-3/2 中心和“暗”S=1 中心基态中的交叉弛豫进行温度传感,利用“亮”自旋-3/2 中心基态水平反交叉,可以使用相同的自旋系统实现具有亚微米空间分辨率的集成磁场和温度传感器。
ERC 计划的历史现已揭晓,由 ERC 计划长期负责人 Lynn Preston 和传播顾问 Courtland Lewis 撰写,并于 2020 年 8 月出版。它以在线电子书的形式免费提供。《变革的推动者:NSF 的工程研究中心》描述了 ERC 在发现、技术和教育进步方面取得的主要成就。这本电子书提供了全面且易读的描述,介绍了该计划如何在数十年间不断发展以应对挑战并满足不断变化的世界的需求。要阅读这项具有里程碑意义的 NSF 工程实验的深入故事,请访问 https://erc-history.erc-assoc.org/ 。
采用微下拉法生长了一系列 Yb 3 + 掺杂的钇铝单斜 Y 4 Al 2 O 9 (Yb:YAM) 单晶,其中 Yb 3 + 离子浓度分别为 0.1、1、5 和 10 at.%。低温吸收测量表明 Yb 3 + 结合在几个明确的中心。位置选择性激发和发射实验可以定位系统中检测到的主要中心的基态 2 F 7/2 和 2 F 5/2 流形的能级。测量了 10 至 300 K 范围内的跃迁能量和共振跃迁线宽的温度依赖性,并且可以通过一个声子近共振过程很好地描述。还研究了 Yb 3 + 浓度对 Yb:YAM 荧光光谱结构的影响。观察到随着 Yb 3 + 浓度的增加,来自低能位点的发光占据了发射光谱的主导地位。分析了在每个位点的选择性激发下在 10 至 300 K 温度范围内记录的荧光动力学。© 2020 作者。由 Elsevier BV 出版这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
First Solar 企业可再生能源团队高级总监 Karl Brutsaert 帮助微软等公司实现可持续和可再生能源目标。通过与微软合作,First Solar 实现了双赢。“我认为最好的合作伙伴关系是双赢的,我们的成功就是合作伙伴的成功,反之亦然。这就是我们在微软所拥有的,”Brutsaert 说。“你知道,有一种共生价值循环的概念,但本质上,微软的基于云的技术使 First Solar 能够更高效、更经济地生产太阳能模块。反过来,我们的太阳能发电厂为微软的云提供可持续的电力,使微软能够以环境可持续的方式扩展数据功能。”
近年来,金刚石中的氮空位 (NV) 中心已经成为一个类似原子的系统,在精密测量、量子信息处理和量子基础研究方面有许多应用。在本文中,我们重点研究了 NV 中心作为光激发和局部温度传感的函数的特性。为了证明 NV 中心对基础科学研究和技术应用的巨大潜力,对 NV − 缺陷中心,特别是在各种光激发下的了解仍然不足。在本文中,我们探讨了影响 NV − 中心 ODMR 信号的几个因素,例如微波辐射源的功率、磁场强度、光激发强度和光学系统的检测效率。用于这些实验的光谱方法称为光学检测磁共振 (ODMR)。实验旨在测量不同类型样品在不同光激发强度下NV − 中心的对比度特性,并通过能级模拟模型估计能级间的布居分布,从而得到实验结果。这些观察结果和模型为理解不同光激发下NV 中心成像的对比度分析提供了良好的理解,也为改进NV − 检测奠定了基础。之后,利用实验所得知识,采用第 3 1 章中提出的无背景成像技术,该方法被用于绘制神经元细胞培养中接种的纳米金刚石的图像。为了了解不同光激发强度下NV − 中心对比度的一般特征,对多个单晶样品进行了实验,并在第 4 章中报告了实验结果。第 5 章研究了NV − 中心的温度检测特性。介绍了一种称为跳频法的新方法来检测所需表面的局部温度变化。该方法首先在单晶金刚石样品上进行测试,然后在纳米金刚石上进行测试。最后,该技术被应用于测量局部温度变化的实际问题
