PSC 和神经元细胞培养 Essential 8 培养基 500 mL A1517001 StemFlex 培养基 500 mL A3349401 StemScale PSC 悬浮培养基 1 L A4965001 B-27 Plus 添加剂 10 mL A3582801 Neurobasal Plus 培养基 500 mL A3582901 蛋白表达系统 Expi293 表达系统试剂盒 1 套 A14635 ExpiCHO 表达系统试剂盒 1 套 A29133 ExpiSf 表达系统入门试剂盒 1 套 A38841 Expi293 GnTI 表达系统试剂盒 1 套 A39250 Expi293 诱导表达系统 1 套 A39251 Expi293 诱导 GnTI 表达系统试剂盒 1 套 A39252 CTS 产品 CTS Essential 8 培养基 500 mL A2656101 CTS 氙气电穿孔系统1 个系统 A50301 CTS Rotea 逆流离心系统 1 个系统 A44769 CTS NK-Xpander 培养基 500 mL A5019001 CTS AIM V 培养基,不含酚红,不含抗生素 2 L A4672701 CTS AIM V SFM 1,000 mL 0870112DK CTS LV-MAX 慢病毒生产系统 1 套 A35684 CTS OpTmizer Pro SFM 1 L A4966101 CTS 病毒生产培养基 1 L A5144001 CTS 病毒生产细胞 2.0 1.5 mL A48400 CTS AAV-MAX 转染试剂盒 用于 1 L 生产 A5427701 CTS AAV-MAX 裂解缓冲液 100 mL A5152101 转染产品 Lipofectamine 3000 转染试剂0.1 毫升 L3000001 Neon NxT 电穿孔系统入门包 1 套件 NEON1SK 根据您的需求在 thermofisher.com/transfectionselect 查找转染产品
修改的方案向导®基因组DNA纯化试剂盒的基因组纯化试剂盒通过离心在10ml颗粒2ml中通过离心在13,000 rpm 1以13,000 rpm 1恢复5分钟,在540 µl EDTA中重悬于540 µl的EDTA中,在50 mm,PH 87 µL,pH 30 µl,在10 mg lysozeme中,lysozym/c在10 mL在13,000 rpm丢弃的13,000 rpm处离心3分钟,将沉淀物恢复为600 µl的“核酸溶液”(来自KIT),并在80°C下混合热量5分钟(允许下一步冷却至下一步)加入3 µL RNase(从KIT中)添加3 µL RNase(从KIT中)在37°C下添加200 µL,并加入200 µL(oft of kit)(oft of of kit),并加入200 µL(oft of of of kit)(oft of of Kit)。 ice for 5 min Centrifuge for 3 min at 13,000 rpm TRANSFER supernatant to a 1.5 mL tube Add 600 µL isopropanol at ambient temperature Mix by inverting the tube Centrifuge for 3 min at 13,000 rpm DISCARD the supernatant 2 Add 600 µL of 70% ethanol at ambient temperature Centrifuge for 3 min at 13,000 rpm 3 DISCARD ethanol Dry pellet at 37°C在50-100 µL的水或洗脱缓冲液中重悬于gDNA(套件):如果需要更多的DNA,则每个培养物多个管子以上一个管。这些可以在较小的体积中洗脱,并在洗脱步骤中合并。根据细菌菌株以达到所需的DNA量,提取1至4个颗粒可能是必需的。2 DNA颗粒可能并不总是可见。乙醇洗涤通常会显示出更长的3个离心机,如果白色颗粒保持松动,以促进收集干净的上清液。QC
摘要简介:目前的认识突出了白血病细胞与其微环境之间的复杂关系,强调了环境因素对化疗耐药性或敏感性的重大影响。血小板衍生微粒 (PMP) 在促进细胞间通讯方面起着至关重要的作用,对癌症病理学和治疗结果的复杂动态有重大贡献。本研究旨在调查 PMP、Ara-C 及其组合对癌细胞的细胞毒性和凋亡作用,以及它们对急性淋巴细胞白血病 (ALL) 细胞系 (Nalm-6) 中 Bax、Bcl-2、P21 和 h-TERT 等关键基因表达的影响。方法:通过以不同速度离心分离 PMP,并使用 BCA 分析法测定其浓度。使用动态光散射 (DLS) 和流式细胞术分析 PMP 的大小和免疫表型特征。采用MTT法、台盼蓝拒染法和流式细胞术检测PMP、Ara-C及其联合用药对Nalm-6细胞的细胞毒性和凋亡作用,并采用实时PCR分析基因表达水平。结果:研究结果表明,PMPs对Nalm-6细胞活力和凋亡并没有独立影响,但是,PMPs与Ara-C联合用药可以增强Ara-C对细胞活力和凋亡的抑制作用。MTT法检测显示,PMPs和Ara-C无论是单独用药还是联合用药,对Nalm-6细胞均有细胞毒性作用,联合用药还能显著影响Bax、Bcl-2、P21和h-TERT基因的表达。结论:研究表明,PMPs有可能提高Ara-C化疗在治疗ALL方面的疗效。这些发现有助于更深入地了解 PMP 与化疗药物之间的相互作用,为优化治疗策略和改善 ALL 患者预后提供潜在见解。
摘要来自肝脏疾病,非酒精性脂肪性肝炎(NASH)是一种影响世界上5.3%的人的疾病。NASH患者的肝脏患有炎症,这也称为纤维化,可以是慢性的,并导致肝硬化的发展。为治疗纤维化患者,正在进行研究以开发抗纤维化疗法以抑制纤维化。在这些研究中,重点是开发自身蛋白酶抑制剂以减少纤维化。酶自身蛋白酶在LPA的产生中起重要作用,LPA是细胞外信号分子。lpa可以作为细胞外分子与LPA 1-3受体结合,而LPA 4-6受体则在ATX的指导下优选地通过LPA激活。由于LPA受体参与纤维化,因此希望使用人类肝星状细胞(HSCS)细胞系LX-2研究这些受体在肝纤维化中的差异,并用LPA受体敲除。要创建此基因敲除细胞系,需要使用CRISPR/CAS9转染LX-2细胞进行优化的核反理®方案。在这里,基于转染效率和细胞活力,将核对甲基®程序EW-113和CA-137进行比较。需要用于核对®实验150.000个细胞。为了在离心后获得最小的细胞损失,研究了不同的离心程序(90xg 10分钟,240xg,持续3分钟,300xg持续5分钟)。从实验的结果中,离心程序之间的离心损失最小的离心机损失没有显着差异。从转染效率和细胞活力的结果中,该程序CA-137是最合适的程序,具有最高的细胞活力,并结合了具有CRISPR/CAS9的LX-2细胞的足够高的转染效率。
分离染色体的流式细胞术是细胞遗传学的一种新方法,可快速测量单个中期染色体。在这种方法中,用适当的荧光染料染色的水悬浮液中的染色体被限制在激发染料的窄激光束中高速流动。发射的荧光通过光度法测量,累积的数据形成染色体荧光的频率分布。该频率分布的峰值归因于单个染色体或具有相似荧光的染色体组;峰值平均值与染色体荧光成正比,峰值面积与染色体出现频率成正比。因此,频率分布可作为核型(1、2)。此外,流式分选可根据染色体的染色特性分离染色体(3、4),这与传统的中期染色体纯化方法不同,后者依赖于速度或等密度沉降、区域离心或选择性过滤(5)。纯化单个中期染色体很重要,原因如下。富集或纯染色体部分已进行生化分析,以提供有关 DNA 或蛋白质结构的信息(6),将遗传信息转移到整个细胞(7-9),或通过体外杂交绘制基因图谱(10)。但一般来说,传统技术无法提供足够纯度的染色体,无法进行高分辨率生物或生化研究。通过基于溴化乙锭荧光的流式分选,我们以 90% 的纯度将雄性鹿 Muntiocus muntjak (2n = 7) (4) 的每个染色体和中国仓鼠 M3-1 细胞系的 14 种染色体类型分离成 8 个染色体组 (1, 3)。在我们之前对溴化乙锭染色的人类染色体的研究中,我们仅从雄性 (2n = 46) 的 24 种染色体类型中分辨出 8 个染色体组 (2, 3)。在本研究中,使用 DNA 荧光染料 33258 Hoechst 和改进的仪器,
抽象的舌头拭子(TS)采样与定量PCR(QPCR)结合检测结核分枝杆菌(MTB)DNA是痰液测试结核病(TB)诊断的有希望的替代方法。在先前的研究中,擦拭舌头的敏感性通常低于痰液。在这项研究中,我们评估了两种提高灵敏度的策略。一方面,用于从2 ml悬浮液中浓缩舌头细菌,这些悬浮液从高容量的泡沫拭子样品中洗脱。将沉淀重悬于500 µL悬浮液中,然后在双目标qPCR之前机械裂解以检测MTB插入元件为6110,为1081。分级实验表明,可沉积分数中存在临床拭子样品中的大多数MTB DNA信号(99.22%±1.46%)。当适用于从124个具有推定性结核病的南非人收集的存档泡沫拭子时,该策略表现出83%的敏感性(71/86)和100%特异性(38/38),相对于痰液微生物学参考标准(MRS; Sputum; Sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum》;第二种策略使用了序列特异性磁捕获(SSMAC)来浓缩从MTB细胞释放的DNA。该方案是在存档的Copan floqswabs蜂拥而至的木材样品上进行了评估,这些拭子样品是从128个具有推定性结核病的南非参与者中收集的。将洗脱为500 µL缓冲液的材料机械裂解。通过蛋白酶K消化悬浮液,与生物素化的双靶寡核苷酸探针杂交,然后使用磁分离浓缩约20倍。在对浓缩物的双目标qPCR测试后,该策略相对于痰液MRS表现出90%的敏感性(83/92)和97%的特异性(35/36)。这些结果指向了用于检测TS中MTB DNA的可自动性高敏性方法的道路。
简介:洪水可能导致土壤中的微生物种群从一个区域转移到另一个区域。放线菌是一种土壤微生物,由于其产生次级代谢物的能力,其商业价值最高。这项研究旨在阐明从洪水和未洪水区域分离的放线菌的抗菌活性。方法:土壤样品是从吉兰丹州达蓬市的洪水泛滥地区和凯兰丹耶利(Jeli)的未洪水地区收集的。使用三种分离方法分离放线菌;超声处理,离心和氯胺T。根据其生长模式(孢子形成),菌落颜色,空中和底物菌丝色以及生长培养基中的可溶性色素形成,筛选了分离的菌株的形态特征。在形态上不同的菌株针对大肠杆菌和白色念珠菌的抗菌和抗真菌活性进行了测试。结果:从土壤样品中分离出970个放线菌菌株(来自洪水的570个菌株和未淹没土壤的400株)。在形态上只有281个菌株是不同的。三十个放线菌菌株的抗菌活性和抗真菌活性。其中十七个抑制了至少一种测试微生物。结论:总而言之,我们的观察结果表明,从洪水泛滥的地区获得的土壤样品显示出各种各样的放线菌,从其形态学特征可以明显看出。这一发现表明,与非洪水土壤面积相比,洪水泛滥的土壤区域具有更高的放线菌。此外,我们发现57%的测试放线菌菌株对至少一种测试有机体表现出活性,表明它们的未来研究潜力。马来西亚医学与健康科学杂志(2023)19(SUPP9):42-49。 doi:10.47836/mjmhs.19.s9.7马来西亚医学与健康科学杂志(2023)19(SUPP9):42-49。 doi:10.47836/mjmhs.19.s9.7
层次结构设计可以引入特定系统的进一步复杂性。[22],例如,具有跨平面的多层PC膜的晶格常数显示在单组分系统中找不到的晶格。这些范围从宽带反射率[23]到角度选择性。[24],制造方法通常是乏味的,通常施加物理蒸气沉积或重复的胶体组件。[25,26]没有精确的优化,后者可能会遭受预先形成的层和分层的影响。进一步的问题包括在界面处的光散射和小样本量。尽管对光子晶体和眼镜进行了激烈的研究,但胶体介质结构的一个主要类别的关注很少:连续梯度结构。连续梯度是一个新兴的话题,文献中很少有例子和方法。可以通过离心[27,28]组装后变形[29]或修饰涂层程序形成逐渐变化,例如,在颗粒间距离或组合中。[30,31]从基本的角度来看,需要开发对具有逐渐变化特性的光子材料的物理理解,并将其与实验结果进行比较。[32–34]据我们所知,迄今为止,尚未对具有连续粒度梯度的光子集成组件实现实验性实现。第二,自组装必须保留,而不是混合粒度梯度,并将颗粒逐渐固定在胶体合奏中。要达到这样的结构,需要解决两个主要挑战:首先,需要可靠地可靠地可靠地控制大小的精确控制和连续的大小变化。在这里,我们为两个挑战提供了一种解决方案,这些挑战也可以应用于其他(功能性)颗粒。这种连续梯度胶体玻璃的一般方法将为胶体介质结构的领域增加缺失的碎片,并为光子工程及其他地区打开一个新的领域。心脏
微生物学实验室课程中的技能增强课程(SEC)仪器 - 对重要工具的原理和应用研究1.微生物实验室及其使用中使用的玻璃器皿 - 培养皿烧杯,圆锥形瓶等。护理和处理2。在实验室环境中进行操作应用的孵化器原理,用于培养和增长的微生物温度和湿度控制,并监测技术3.热空气烤箱操作原理和在实验室环境中用于玻璃器皿和耐热材料温度设置和监视程序的均匀热分配应用4.显微镜简介不同类型的显微镜(光学显微镜,电子显微镜)零件和显微镜的功能5。在实验室环境中创建厌氧条件应用的厌氧罐原理,用于培养和研究厌氧微生物的组装,维护和预防措施,同时使用厌氧罐6.凝胶电泳类型的电泳,凝胶电泳过程。7。在实验室环境中pH测量和pH量表应用的pH仪原理,用于测量溶液校准,维护和准确的pH测量技术8.层流空气流原理在实验室环境中创建无菌工作环境应用,以便使用样品适当使用,维护和安全预防措施,同时使用层流空气流柜9。分光光度计测量光吸收和传输工作和应用紫外线分光光度计的原理10。基于微生物学实验室中的密度应用,用于颗粒细胞,分离组件和净化样品,适当的处理,平衡和安全预防措施的同时,在微生物学实验室中的密度应用,分离组件,分离组件和净化样品,在使用离心机的同时,在微生物学实验室中进行离心和分离物质的离心原理。注意 - 可以教会学生有关处理实验室工具安全预防措施,维护和故障排除常见问题的一般指南。可以合并实践演示,动手练习和案例研究以增强学习经验。
从果蝇中的基因组DNA制备该方案可以从40-100 mg的成年蝇(蝇重约1 mg)中分离出高度纯的基因组DNA。首先,在核保持完整的条件下,蝇是在缓冲液中磨碎的,然后使用SDS将DNA从断裂的组织中释放出来。接下来,进行常规的苯酚提取(去除蛋白质)和氯仿提取(去除苯酚),并用乙醇沉淀核酸。离心后(去除脂质和小细胞分子),将核酸沉淀溶解并用rnasea(降解RNA)和蛋白酶K(降解rNASEA和其他蛋白质)串行消化。其他苯酚/氯仿沉淀和乙醇沉淀产生高度纯化的基因组DNA。我们的目标是完整的基因组DNA - 避免通过过度的移液和涡旋剪切DNA。1。将50个成年果蝇放入装有微型植物的1.5 mL微管中,并在500 µl的缓冲液中彻底磨碎A。用500 µl的缓冲液B冲洗杵,将冲洗液加入匀浆中;通过反转微管轻轻混合。在37°C下孵育1小时2。切断P1000微量移动尖端的尖端,然后使用它将匀浆(500 µL)的一半转移到第二个微管中。苯酚通过在每个管,帽和混合物中添加相等的体积(500 µL)Te饱和苯酚来提取样品。离心5分钟。3。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。离心5分钟。4。5。通过在每个管,帽和混合物中添加等体积(500 µl)苯酚的苯酚来重新提取样品。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。氯仿通过在每个管,帽和混合物中添加等体积(500 µl)的氯仿提取样品。离心1分钟。使用截止尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。将NaCl添加到0.1m的最终浓度。乙醇通过在每个微管中添加2卷(〜850 µl)的EtOH来沉淀您的样品;轻轻混合。观察核酸的沉淀。将微管放在-20°C过夜以鼓励沉淀。6。离心10分钟。丢弃上清液;短暂地干燥SpeedVac中的颗粒(将显示使用)。7。如下,将样品组合到单个微管中。然后,使用截止P200尖端将500 µl TE缓冲液加到一个管中
