抽象的自我修复材料已被认为是一种有希望的下一代材料。其中,自我修复的陶瓷起着特别重要的作用,必须更好地理解它们。因此,在这项研究中,我们将基于氧化动力学的构造模型应用于自我修复陶瓷(氧化铝/SIC复合材料)中一系列损害治疗过程的有限元分析。在有限元分析中,使用裂缝机械模型的微观质量分布的数据(例如相对密度,大小和毛孔的纵横比和晶粒尺寸)作为输入值,并反映在连续损伤模型的参数上。然后,我们进行了3分弯曲分析,以考虑在一定温度和氧气部分压力条件下的自我修复效应以及陶瓷强度的散射。我们的结果证实,所提出的方法可以合理地重现自愈合陶瓷中的强度恢复和损害传播行为。
众所周知,所有铁电材料都是压电材料,因此外部压力会使这些系统的尺寸变形,从而根据其传感能力产生合适的压力传感器。在所有铁电材料中,铅 (Pb) 基铁电材料由于其高灵敏度和耐用性而被发明并用作压力传感器。1 – 7 在过去的几十年里,这些系统已被用作电容器、传感器、执行器和静电设备等。8 – 17 过去,包括我们小组在内的许多作者都报道过在低压和高压范围内适用于压力传感器的铅基材料,其中介电常数、压电系数和电容电抗随压力发生显著变化。 1 – 3,5 – 7,13,18 – 26 然而,压力对介电常数变化的影响并不显著,以至于无法在实际高压传感器装置中实现。另一个缺点是介电常数与压力呈线性关系。为了克服这些缺点,我们一直在寻找具有高灵敏度和线性度的新型陶瓷材料。为了实现这一目标,我们选择了众所周知的 Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) 作为母体基质,并用适当的 Bi 浓度替代。
碳化物纳米结构因其良好的性能(热、电、机械、光学和化学)而在可再生能源领域(如太阳能的节约和释放)有着巨大的应用前景。因此,本文研究了不同浓度的金属碳化物纳米颗粒(碳化钽-碳化硅)用于建筑供暖和制冷的碳化物纳米颗粒/水的太阳能存储和释放。结果表明,随着(TaC-SiC)纳米颗粒浓度的增加,热能存储和释放的熔化和凝固时间缩短。从得到的结果来看,TaC/SiC纳米结构/水纳米系统被认为是一种有前途的太阳能存储和释放材料,具有高效率和高增益(与水相比超过50%)。此外,TaC/SiC可用于加热和冷却领域,具有良好的性能和高增益。
摘要 本文制备了不同锡含量(a从0.0到0.1范围)的多元Pb 0.75 Ba 0.25 (Zr 0.65 Ti 0.35 ) 1- a Sn a O 3 (PBZT/Sn) 陶瓷。采用无压烧结法对PBZT/Sn陶瓷样品进行致密化。研究了SnO 2 含量对PBZT/Sn陶瓷的晶体结构、微观结构、直流电导率和电物理性能(包括介电和铁电测试)的影响。PBZT/Sn陶瓷样品在铁-顺电相变温度下表现出高的介电常数,表现出相变的弛豫特征。 PBZT/Sn 材料中 SnO 2 含量过高(a = 0.1)可能会导致晶格应力和结构缺陷,从而导致陶瓷样品的铁电和介电性能下降。本研究表明,在基础 PBZT 化合物中添加 SnO 2(以适当的比例)可以影响微机电一体化和微电子领域实际应用所必需的参数。
一个直接的优势是减少浪费——数字印刷是一种非接触式装饰技术(与压在精致瓷砖上的滚筒或平网印刷相比),因此不会出现瓷砖破损。下一个优势是最小批量变成了一个,因此转换或设置新设计不会浪费材料或时间,因此成本为零。相比之下,传统方法每次设计转换都需要新的丝网或滚筒套,还要花费时间和精力检查颜色一致性。事实上,现在计算机可以控制颜色,这也意味着更容易一次又一次地复制图案,从而减少库存。所有这些变化都降低了成本和库存资金,这是大规模数字化转换的主要财务驱动力。
作者:Edgar Dutra Zanotto 1953 年,微晶玻璃被发现,这多少有点偶然。从那时起,世界各地的研究机构、大学和公司发表了许多激动人心的论文,并获得了与微晶玻璃相关的专利。微晶玻璃(也称为玻璃陶瓷、焦陶瓷、玻璃陶瓷、玻璃陶瓷和硅酸盐)是通过控制某些玻璃的结晶而制成的,通常由成核添加剂诱导。这与自发表面结晶形成对比,自发表面结晶在玻璃制造中通常是不受欢迎的。它们总是包含残留玻璃相和一个或多个嵌入结晶相。结晶度在 0.5% 到 99.5% 之间变化,最常见的是在 30% 到 70% 之间。受控陶瓷化可产生一系列具有有趣、有时不寻常的特性组合的材料。
作者:Edgar Dutra Zanotto 1953 年,微晶玻璃被发现,这多少有点偶然。从那时起,世界各地的研究机构、大学和公司发表了许多激动人心的论文,并获得了许多与微晶玻璃相关的专利。微晶玻璃 (也称为玻璃陶瓷、焦陶瓷、玻璃陶瓷、玻璃陶瓷和硅酸盐) 是通过对某些玻璃进行受控结晶而制成的,通常由成核添加剂诱导。这与自发表面结晶相反,后者在玻璃制造中通常是不受欢迎的。它们总是含有残留玻璃相和一个或多个嵌入的晶相。结晶度在 0.5% 到 99.5% 之间,最常见的是在 30% 到 70% 之间。受控陶瓷化可以产生一系列具有有趣的、有时是不寻常的特性组合的材料。
作者:Edgar Dutra Zanotto 1953 年,微晶玻璃被发现,这多少有点偶然。从那时起,世界各地的研究机构、大学和公司发表了许多激动人心的论文,并获得了许多与微晶玻璃相关的专利。微晶玻璃 (也称为玻璃陶瓷、焦陶瓷、玻璃陶瓷、玻璃陶瓷和硅酸盐) 是通过对某些玻璃进行受控结晶而制成的,通常由成核添加剂诱导。这与自发表面结晶相反,后者在玻璃制造中通常是不受欢迎的。它们总是含有残留玻璃相和一个或多个嵌入的晶相。结晶度在 0.5% 到 99.5% 之间,最常见的是在 30% 到 70% 之间。受控陶瓷化可以产生一系列具有有趣的、有时是不寻常的特性组合的材料。
作者:Edgar Dutra Zanotto 1953 年,微晶玻璃被发现,这多少有点偶然。从那时起,世界各地的研究机构、大学和公司发表了许多激动人心的论文,并获得了许多与微晶玻璃相关的专利。微晶玻璃 (也称为玻璃陶瓷、焦陶瓷、玻璃陶瓷、玻璃陶瓷和硅酸盐) 是通过对某些玻璃进行受控结晶而制成的,通常由成核添加剂诱导。这与自发表面结晶相反,后者在玻璃制造中通常是不受欢迎的。它们总是含有残留玻璃相和一个或多个嵌入的晶相。结晶度在 0.5% 到 99.5% 之间,最常见的是在 30% 到 70% 之间。受控陶瓷化可以产生一系列具有有趣的、有时是不寻常的特性组合的材料。