摘要:白色念珠菌是一种自然存在于人皮肤和粘膜表面上的共生酵母。尽管它能够在人类宿主中无害生存,但它被认为是一种机会性病原体,可以在免疫功能低下的个体中引起严重而威胁生命的疾病。这是医院血液感染的第四大原因,是与侵入性真菌感染相关的死亡的主要原因。缺乏有效的抗真菌疗法以及抗真菌抗药性耐药性的发生率上升已确立了这种生物体对人类健康的重大威胁。基因编辑技术(例如CRISPR)的进步提供了有效的手段,可以通过这些方式研究白色念珠菌,以帮助识别新型的抗真菌药物靶标,并探索降低抗真菌耐药性耐药性的可能途径。在细菌中,有一个公认的现象将抗生素与诱变和耐药性率提高,由易易折磨的聚合酶介导。这些聚合酶在应力诱导的DNA损伤后上调。它们促进了快速的DNA修复并赋予DNA损伤的耐受性,同时将突变引入基因组,最终驱动耐药性。尽管在模型酵母有机体酿酒酵母中已经确定并研究了易论错误的聚合酶,但它们尚未在病原性酵母菌(例如白色念珠菌)中表征。基于酿酒酵母中的已知直系同源物,在白色念珠菌中敲出了六个编码容易发生聚合物酶的基因。评估了这些因素的表达,以监测其在DNA损伤条件下的上调。i的重点是Rev1,并将其角色描述为DNA损伤途径,诱变和调节抗真菌耐药性的重要因素。
需要高生产率和鲁棒性提高的代谢工程,以使木质纤维素生物量的可持续生物生产乳酸。乳酸是一种重要的商品化学化学物质,例如作为可生物降解聚合物的聚乳酸生产的单体。在这里,使用有理和模型的优化来设计二倍体的木糖发酵酵母酿酒酵母菌株以产生L-乳酸。通过删除ERF2,GPD1和CYB2的多种乳酸脱氢酶编码基因,将代谢通量转向乳酸。使用木糖作为碳源实现了93 g/l的乳酸,其产率为0.84 g/g。增加了木糖利用并减少乙酸合成,还从菌株中删除了PHO13和ALD6。最后,编码丙酮酸激酶的CDC19过表达,导致消耗的0.75 g乳酸/g糖的产率,当使用的底物是一种合成木质纤维素水解培养基时,含有六糖和乙酸和固定剂等合成木质纤维素水解培养基。值得注意的是,建模还为理解氧气在乳酸产生中的影响提供了潜在客户。从木糖中产生高乳酸,在氧气限制下可以通过氧化磷酸化途径减少的通量来解释。在对比度上,较高的氧气水平对乳酸的产生有益于合成水解培养基的乳酸,这可能是耐受抑制剂所需的ATP浓度较高。这项工作突出了酿酒酵母对木质纤维素生物量产生乳酸的潜力。
生物活性化合物是药物,细菌,真菌和海洋生物中发现的物质。天然和不自然的生物活性化合物都包括二级代谢产物及其衍生物,例如异丙型,异氟av虫,肽抗生素和生物碱的糖苷衍生物。这些化合物在各种领域都起着重要作用,包括药物和农业化学产品,化妆品,生物燃料和食品添加剂。从活生物体中提取和隔离天然产物在药物的生产中发挥了重要作用。与自然生物活性化合物一起,已开发出生成自然和非天然化合物的合成生物学。该研究主题提供了生物活性化合物合成生物学的最新进展,新兴的挑战和前景。与已用于生产天然生物活性化合物的模型微生物(大肠杆菌和酿酒酵母)一起,已开发出非惯性宿主用于工业产品的生物合成。Rojo等。与基于植物的生产系统相比,大肠杆菌和酿酒酵母的优势。同类植物衍生物的衍生物pterocarpans和Coumestans的产量通常很低,需要耗时的工业产品。为了克服这些局限性,工程的微生物已被用作替代pterocarpans和coumestans的生产滴度的替代方法。Giménez等。 回顾了素型真菌是在生物技术领域的新型平台开发的。Giménez等。回顾了素型真菌是在生物技术领域的新型平台开发的。最有利的纤维真菌包括在许多不同的底物和植物残留物上生长的能力,这些能力对圆形生物经济有关键的贡献。根据著名的全基因组序列
记录1中的54个标题:重新布线 saccharomyces cerevisiae 代谢用于优化的紫罗兰前体®前体生产作者:Nowrouzi,b(nowrouzi,behnaz);托雷斯·蒙特罗(Torres-Montero),P(托雷斯·蒙特罗(Torres-Montero),帕勃罗(Pablo)); Kerkhoven,EJ(Kerkhoven,Eduard J.); Martínez,JL(Martinez,Jose L.); Rios-Solis, L (Rios-Solis, Leonardo) Source: METABOLIC ENGINEERING COMMUNICATIONS Volume: 18 Article Number: e00229 DOI: 10.1016/j.mec.2023.e00229 Early Access Date: DEC 2023 Times Cited in Web of Science Core Collection: 0 Total Times Cited: 0 Usage Count (Last 180 days): 16 Usage Count (Since 2013): 16 Cited Reference Count: 110 Abstract:酿酒酵母已方便地用于生产紫杉醇(R)抗癌药物早期前体。然而,第一细胞色素P450-还原酶(CYP725A4-POR)的氧化应激对紫杉醇(R)途径的有害影响妨碍了酵母的足够进展。在这里,我们进化了氧化应激的抗酵母菌菌株,其底物的巨滴较高三倍。然后在氧化剂之前和下在氧化应激之前和下在半乳糖限制的化学固醇中评估了进化和母菌株的性能。通过转录组学和代谢物谱图在酵母酶约束的基因组量表模型中进行了全面评估进化和氧化应激的相互作用。总体而言,进化的应变显示出呼吸的改善,溢出代谢产生的降低以及氧化应激的重新诱导耐受性。交叉保护机制也有可能导致更好的血红素,黄素
这项研究评估了利用酿酒剂的木质纤维素水解物(BSG)作为氨基酸(AA)生产的木质纤维素水解物的潜力。主要目标是使用选定的微生物探索BSG水解产物的AA产生。最初,筛选了不同的微生物在BSG水解物上的生长,并通过奶昔和生物反应剂中的培养进一步研究了选定的微生物,以进一步研究AA的生产。从这种筛查中,选择了酿酒酵母和谷氨酸杆菌。C.谷氨酰胺在奶昔和生物反应器中产生丙氨酸,脯氨酸,缬氨酸和甘氨酸。在30小时后在奶昔中发现了最高的丙氨酸产生(193.6±0.09 mg/L),而生产脯氨酸(22.5±1.03 mg/l),Valine(34.8±0.11 mg/L)和甘氨酸和甘氨酸(34.8±0.11 mg/L)和甘氨酸(18.7±1.30 mg/l)(18.7±1.30 mg/l)在Bioreactor中和val(gly)和val(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(8小时)。为了增强谷氨酸梭菌的AA产生,进行了饲喂批处理发酵实验。除甘氨酸外,在饲料批次阶段没有产生AA。S。酿酒酵母在奶昔烧瓶中产生丙氨酸,脯氨酸,缬氨酸和谷氨酸,而在生物反应器中则不会产生。在50小时产生50 h,而在60 h 60小时后,获得了50 h,而产生谷氨酸(66.2±0.49 mg/l),而谷氨酸产生(66.2±0.49 mg/l),获得了最高生产(11.8±1.25 mg/l),脯氨酸(11.8±1.06 mg/L)和Valine(4.94±1.01 mg/L)。这项研究的恶魔通过淹没发酵促进了BSG的几个AA的产生。但是,需要进一步优化以提高生产率。
酵母基因组删除项目 (SGDP) 使用五株源自酿酒酵母 S288C 的 Dharmacon 酵母敲除 YKO 亲本菌株,生成了一套几乎完整的酵母开放阅读框 (ORF) 敲除。1 使用基于 PCR 的策略将每个 ORF 替换为 KanMX 盒,该盒包含每个删除的独特标签“条形码”。生成了四个不同的突变体集合:交配类型 MATa 和 MATalpha 的单倍体、非必需基因的纯合二倍体和包含必需和非必需 ORF 的杂合二倍体。存储:
酵母β-葡萄糖提取物酵母多糖葡萄糖酿酒酵母提取物作为国际化妆品成分词典和手册中给出的酵母的定义,非常广泛,该面板发布了该成分组的数据公告(IDA)不足,要求对这些成分进行澄清,并在这些产品中使用了这些成分的配置。在发行IDA时,直到2022年2月,酿酒酵母被认为是制备这些酵母菌成分的主要物种。然而,在2022年2月7日,有关酵母提取物的摘要信息,这些酵母提取物是从理事会收到了属于Saccharomycetes类(例如Pichia anomala)的其他几种酵母菌。由于这些新信息,在2022年3月的会议上,发出了一份策略备忘录,要求小组征求报告是否应仅审查酿酒酵母的苏氏糖疗法,或者,如果源自其他Yeast的成分,则在其他酵母中,saccharomycetes class class(例如,Pichia Anomala exterfice of Saccharomycetes class class Saccharomycetes class)。小组建议准备了另一个策略备忘录,包括词典中当前列出的所有酵母成分,以及有关这些成分(或它们的相应物种)是否用于食品中以及它们在化妆品中的使用频率的说明。该小组还要求专家提供有关酵母菌分类和一般生物学知识的指导,并再次要求对酵母菌物种的工业进行验证,这些行业用于制造一般酵母成分(例如酵母提取物)。在2022年9月的会议上,专家介绍了酵母衍生的化妆品成分的制造,一般特征和分类。(此演示文稿可以在数据包中找到为presentation_yeast_062023。)小组审查了Winci词典中存在的所有酵母衍生成分的清单,并确定应根据所有成分(无论使用频率)准备修订的报告草案。因此,提交了56种酵母衍生成分的修订报告草案(report_yeast_062023)以进行审查。不幸的是,行业尚未对所有可用于生产通用酵母成分的酵母种类进行验证。但是,在酵母提取物上收到了三个数据提交(如下所述),并且酵母菌的属和种类(有几种)被用来得出每个提交中称为测试文章的酵母提取物。基于与理事会的个人沟通,即使酵母提取物被确定为INCI名称,也确定这些数据应与这些提交中提到的属和物种得出的特定成分相关联。(例如,在报告中总结了从斑岩异菌衍生出的酵母提取物上的敏化数据作为pichia anomala提取物的研究。)以下是收到的数据:
代谢工程和合成生物学方法已经繁荣了生物技术领域,其中主要重点是大肠杆菌和酿酒酵母作为微生物的工作试验。在近年来,作为生产宿主的革兰氏阳性细菌乳酸菌和枯草芽孢杆菌的注意力越来越多。本评论将证明这些细菌可以设计的不同水平及其各种应用可能性。例如,工程化的乳酸乳杆菌菌株对生物医学应用显示出巨大的希望。此外,我们还提供了最新的合成生物学工具的概述,这些工具促进了这两种微生物的使用。
摘要:由于其复杂性,CRISPR/Cas 系统已成为广泛使用的酵母基因组编辑方法。然而,CRISPR 方法通常依赖于预组装的 DNA 和额外的克隆步骤来传递 gRNA、Cas 蛋白和供体 DNA。这些繁琐的步骤可能会阻碍其实用性。在这里,我们提出了一种替代方法,即组装和 CRISPR 靶向体内编辑 (ACtivE),该方法仅依赖于线性 DNA 片段的体内组装来构建质粒和供体 DNA。因此,根据用户的需要,可以从存储库中轻松选择和组合这些部分,作为快速基因组编辑的工具包,无需任何昂贵的试剂。该工具包包含经过验证的线性 DNA 片段,易于在室温下存储、共享和运输,大大降低了昂贵的运输成本和组装时间。优化该技术后,还对酵母基因组中靠近自主复制序列 (ARS) 的八个基因座进行了整合和基因表达效率表征,以及这些区域的破坏对细胞适应性的影响。通过构建 β-胡萝卜素途径展示了 ACtivE 的灵活性和多路复用能力。在短短几天内,在酿酒酵母 BY4741 上从头开始实现了单基因整合效率 >80% 和三重整合效率 >50%,无需使用体外 DNA 组装方法、限制性酶或额外的克隆步骤。本研究提出了一种可轻松用于加速酵母基因组工程的标准化方法,并为酵母合成生物学和代谢工程目的提供了明确的基因组位置替代方案。关键词:酿酒酵母、CRISPR 工具包、基因组编辑、合成生物学、标准化、基因座表征■简介