抽象球样二氧化葡萄纳米颗粒是通过热液法合成的。使用各种技术研究了所得的样品,包括X射线粉末衍射光谱(XRD),高分辨率扫描电子显微镜(HRSEM),能量分散X射线光谱(EDX),电子显微镜(TEM)和Ultraviolet可见吸收光谱(UVIS)。通过X射线衍射分析确定,立方荧光岩的晶体结构及其平均粒径范围在10-20 nm之间。使用高分辨率扫描电子显微镜测定二氧化岩纳米颗粒的直径。透射电子显微镜显示,二氧化岩纳米颗粒是球形的,直径约为15.3 nm。能量分散性X射线光谱显示出高度纯的二氧化岩纳米结构。通过紫外可见的吸收光谱估计二氧化岩岩的带隙能量为3.34 eV。此外,通过价带孔的作用,实现了刚果红色染料的最大光催化活性和最大光降解效率。
酶是蛋白质生物分子,具有较高的特定城市和高催化性的效率。天然酶可能会出现一些缺点,例如不稳定的特性,低生物含量,高价等。然而,随着纳米科学的迅速发展,纳米动物学吸引了许多学者和临床医生的注意,因为它们可以提高天然酶的稳定性并降低生产成本。1氧化岩纳米颗粒(CENP)由于其氧化还原调节和酶样活性而被认为是纳米医学中有前途的候选者。2 Cenps已显示出模拟一系列天然氧化还原酶,包括超氧化物歧化酶(SOD)3和过氧化氢酶(CAT),4,它们从体内消除了有害的活性氧(ROS)。Cerium has two di ff erent oxidation states in nature, Ce 3+ and Ce 4+ , and the enzymatic activity of CeO 2 - x scavenging ROS is thought to be due to the self-regeneration cycle of Ce 3+ /Ce 4+ and the oxygen vacancy on the cerium oxide surface 5 (Fig.1)。大多数研究人员认为,CEO 2 -X的抗氧化特性与CE 3+ /CE 4+氧化还原循环密切相关。氧空位在CEO 2 -X的快速氧化还原循环中的潜在作用也是争论的中心。6 X射线光电子光谱分析
这项研究着重于通过合成氧化铜(CEO2)来对抗细菌感染,并使用协同降水方法将其用3%和5%锌掺杂以及7%的钴掺杂来对其进行对抗。系统地研究了结构,形态,光学和抗菌特性。X射线衍射(XRD)表明,退火后,氧化纯含氧岩纯含量从氧化物的12nm增加到13.42nm。扫描电子显微镜(SEM)确认所有样品的聚集球结构。弥漫性反射光谱(DRS)显示出扩大的能带隙,从2.76EV的氧化物原始葡萄含量为3.09EV,即退火的7%钴掺杂含氧铜,表明电子特性的潜在变化。抗菌活性表明,7%的钴掺杂含氧岩氧化物表现出对大肠杆菌和金黄色葡萄球菌的抑制作用最大,表明与其他合成材料相比,抗菌活性上等。因此,这项研究展示了一种针对氧化葡萄纳米颗粒的定制方法,突出了修饰对增强抗菌应用的重要性。这项研究的发现有助于发展晚期抗菌剂的发展,利用了修改的氧化葡萄纳米颗粒的独特特性。
三价铈 (Ce 3 +) 掺杂的氧化钇 (Y 2 O 3 ) 基质晶体由于其流行的 5d-4f 光学跃迁而引起了广泛的兴趣。先前的研究已经证明了 Y 2 O 3 :Ce 体系的优异光学性能,但是微观结构仍不清楚。Y 2 O 3 :Ce 微观结构的缺乏可能会对进一步挖掘其潜在应用造成问题。为此,我们基于 CALYPSO 结构搜索方法结合密度泛函理论计算,全面研究了 Y 2 O 3 :Ce 晶体的结构演变。我们的研究结果揭示了一种具有 R-3 组对称性的新型菱面体相 Y 2 O 3 :Ce。在基质晶体中,中心位置的 Y 3 + 离子可以自然地被掺杂的 Ce 3 + 取代,从而形成完美的笼状结构。我们发现一个有趣的相变:当杂质Ce3+掺杂到基质晶体中时,Y2O3的晶体对称性由立方变为菱面体。当Ce3+的标称浓度为3.125%时,由于基质晶体中占据点的不同,也识别出许多亚稳态结构。模拟了Y2O3:Ce的X射线衍射图,理论结果与实验数据相一致,证明了最低能量结构的有效性。声子色散的结果表明基态结构是动态稳定的。电子性质分析表明Y2O3:Ce具有4.20eV的带隙,这表明杂质Ce3+离子的掺入导致Y2O3基质晶体从绝缘体到半导体的转变。同时,电子局域化函数表明晶体中O原子的强共价键可能对基态结构的稳定性有很大贡献。这些结果阐明了Y 2 O 3 :Ce的结构和成键特征,也为理解实验现象提供了有用的见解。
无机纳米粒子胶体合成中遇到的难点问题。25 – 28 该方法的一个重要优点是不需要高沸点有机溶剂,从而大大降低了纳米粒子的生产成本。图 1 显示了通过无溶剂热分解金属羧酸盐获得可分散金属氧化物纳米粒子的一般合成路线。金属羧酸盐(金属皂)用作分子前体,在低压密闭容器中进行热解反应,以产生溶剂可分散的金属氧化物纳米粒子。该方法通常依赖于两个重要参数:(i)选择或制备合适的金属羧酸盐前体,这些前体可以在相对较低的温度下容易分解。在使用金属盐和脂肪酸的物理混合物的情况下,必须去除所产生的不溶性盐。传统胶体热分解工艺中使用的大多数金属皂或金属盐与脂肪酸的组合也可以方便地适用于此工艺。17,29
[1] M. Yousefi,S。Manouchehri,A。Arab,M。Mozaffari,G.R。Amiri,Amighian,钴铁酸盐的制备(CO 0.8 Zn 0.2 Fe 2 O 4)纳米植物通过燃烧法及其磁性特性的研究,物质研究公告,45(2010)1792-1795。[2] O. Hemeda,M。Barakat,跳跃速率和跳跃电子的跳跃长度对CO - CD铁氧体的电导率和介电性能的跳跃长度,《磁与磁性材料杂志》,223(2001)127-132。[3] J. Tong,W。Li,L。Bo,H。Wang,Y。Hu,Z。Zhang,A。Mahboob,苯乙烯的选择性氧化,由葡萄干掺杂的钴铁氧体纳米晶体催化,具有大量增强的催化性能,催化性催化性,杂志,344(344(2016)474--444-481。[4] M. Amiri,M。Salavati-Niasari,A。Akbari,磁性纳米载体:用于医疗应用的尖晶石铁氧体的进化,胶体和界面科学的进步,265(2019)29-44。[5] K.C.B.Naidu,S.R。 Kiran,W。Madhuri,微波处理的Nimgzn铁氧体用于电磁互力屏蔽应用,IEEE Transactions Magnetics。,53(2016)1-7。 [6] H.R. Ebrahimi,H。Usefi,H。Emami,G.R。 amiri,铜镉铁素纳米颗粒的合成,表征和感应性能研究,IEEE Transactions Magnetics。,54(2018)1-5。 [7] N. Chaibakhsh,Z。Moradi-Shoeili,尖晶石取代的纳米甲硅氟甲烷的酶模拟活性(MFE 2 O 4):综合,机制和潜在应用,材料科学和工程学的综述:C,99(2019)1424-1447。 [9] G. Mustafa,M。Islam,W。Zhang,Y。Jamil,A.W。Naidu,S.R。Kiran,W。Madhuri,微波处理的Nimgzn铁氧体用于电磁互力屏蔽应用,IEEE Transactions Magnetics。,53(2016)1-7。[6] H.R.Ebrahimi,H。Usefi,H。Emami,G.R。 amiri,铜镉铁素纳米颗粒的合成,表征和感应性能研究,IEEE Transactions Magnetics。,54(2018)1-5。 [7] N. Chaibakhsh,Z。Moradi-Shoeili,尖晶石取代的纳米甲硅氟甲烷的酶模拟活性(MFE 2 O 4):综合,机制和潜在应用,材料科学和工程学的综述:C,99(2019)1424-1447。 [9] G. Mustafa,M。Islam,W。Zhang,Y。Jamil,A.W。Ebrahimi,H。Usefi,H。Emami,G.R。amiri,铜镉铁素纳米颗粒的合成,表征和感应性能研究,IEEE Transactions Magnetics。,54(2018)1-5。[7] N. Chaibakhsh,Z。Moradi-Shoeili,尖晶石取代的纳米甲硅氟甲烷的酶模拟活性(MFE 2 O 4):综合,机制和潜在应用,材料科学和工程学的综述:C,99(2019)1424-1447。[9] G. Mustafa,M。Islam,W。Zhang,Y。Jamil,A.W。[8] O. Opuchovic,G。Kreiza,J。Senvaitiene,K。Kazlauskas,A。Beganskiene,A。Kareiva,Sol-Gel合成,选定亚微米化的灯笼的表征和应用(CE,CE,PR,PR,PR,PR,ND,TB,TB)Ferrites,dyes,dyes和Pigments和Pigments和Pigments,118(118),176-22222.2222。Anwar,M。Hussain,M。Ahmad,Ce 3+取代的纳米化纳米化CO - CR Ferrites的结构和磁性的研究,用于多种应用,合金和化合物杂志,618(2015)428-436。
The 17 Rare Earths are cerium (Ce), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), holmium (Ho), lanthanum (La), lutetium (Lu), neodymium (Nd), praseodymium (Pr), promethium (Pm), samarium (Sm), scandium (Sc), terbium (TB),Thulium(TM),Ytterbium(Yb)和Yttrium(Y)。这些矿物具有独特的磁性,发光和电化学性能,因此在许多现代技术中都使用,包括消费电子,计算机和网络,通信,卫生保健,国防,清洁能源技术等。即使是未来主义的技术也需要这些REE。
对扑热息痛的各种配方的定量分析英国药典方法用于分析扑热息痛,涉及将其用1 MOT DM -3 -3 -3硫酸在反流下加热。这是一种直接的,酸催化的,将酰胺水解为胺和羧酸。然后用氧化剂,硫酸铵(LV)硫酸盐使用铁蛋白作为指示剂,将形成的4-氨基苯酚滴定。第一个反应如下:
1 适用的关键矿产包括特定形式的铝、锑、砷、重晶石、铍、铋、铈、铯、铬、钴、镝、铒、铕、萤石、钆、镓、锗、石墨、铪、钬、铟、铱、镧、锂、镥、镁、锰、钕、镍、铌、钯、铂、镨、铑、铷、钌、钐、钪、钽、碲、铽、铥、锡、钛、钨、钒、镱、钇、锌和锆。
由于其多功能性,纳米材料已被深入探索为各种聚合物材料的阻燃剂,但通常无法显着增加极限氧指数(LOI)和垂直燃烧的UL-94等级,因此无法满足工业需求(因此LOI> 27.0%> 27.0%和UL-94 V-94 V-0评分)。在此,我们制造了一种铜/磷掺杂的G-C 3 N 4(CE/P-CN)纳米杂交,作为丙烯腈 - 丁二烯 - 苯乙烯 - 苯乙烯(ABS)的多功能高效火势。CE/P-CN纳米片对ABS具有强化作用,其中10 wt%将ABS/(CE/P-CN)的拉伸强度提高了33.8%。同时,ABS/(CE/ P-CN)纳米复合材料相对于Virgin ABS显示出明显增强的高温稳定性和碳化性的pureporter。ce/p-CN同时改善了由于G-C 3 N 4纳米片的屏障效应以及石和磷的催化碳化效应,因此改善了ABS的抗点燃性,阻燃性和烟雾抑制。值得注意的是,增加10 wt%Ce/p-CN的LOI和UL-94评级分别为28.6%和V-0,表明其高火效率很高。因此,高火质效率和多功能性使CE/P-CN能够优于先前的ABS火焰阻燃剂。这项工作为开发高效G-C 3 N 4纳米片的开发提供了一种新的策略,该纳米片具有改善的机械鲁棒性和阻燃性,并显示出广泛的工业前景。