估计公共报告信息收集负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将关于此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至华盛顿总部服务处、信息运营和报告理事会,地址:1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息未显示当前有效的 OMB 控制编号,则任何人都不会因未遵守信息收集而受到处罚。
国内生产和使用:2021 年,国内没有开采铯,美国 100% 依赖铯矿物净进口。铯榴石主要与富含锂、含锂云母或含透锂长石的带状花岗岩伟晶岩伴生,是主要的铯矿石矿物。铯矿物用作原料,生产各种铯化合物和铯金属。按总重量计算,铯的主要应用是用于石油和天然气勘探和生产的高压、高温钻井的铯甲酸盐水。除甲酸铯外,铯的用途相对较小,大多数用途仅使用几克。由于全球缺乏铯,许多应用都使用了矿物替代品,在任何特定应用中使用铯可能不再可行。
操作 G-859AP 采矿磁选机使用图形界面,可快速高效地进行勘测设计和数据采集。“简单”或“映射”模式使用线号和已知的放样参考点来定义地图参数。或者,用户可以使用集成的 Tallysman TW5310™ GPS 自动绘制位置图。位置信息可能来自外部 GPS、操作员输入的间距均匀的基准标记,或两者兼而有之。用户可随时切换到“剖面”模式,以堆叠剖面的形式观察最后 5 条数据线。数据收集在最多 5 个单独的勘测文件中,并通过高速 RS-232 数据链路(或带转换器的 USB)传输到计算机,以进行进一步分析和地图生成。提供功能齐全的图形数据编辑程序 MagMap2000,允许重新定位、重新对齐、GPS 平滑、数据过滤和数据插值。编辑后,数据将格式化为 Surfer for Windows 或 Geosoft 格式,以便进一步绘图和分析。速度和效率 G-859AP 数据采集提供连续(自动)或离散站点记录。由于仪器在连续模式下的采样率很高,因此数据质量始终很高,而且大多数项目的成本都较低。这使操作员能够快速勘测某个区域,在给定的时间段内覆盖的面积比其他磁力仪多 10 倍。
MAC 的 LED 指示灯和各个模块上的整体设备状态干式继电器触点通过 RS-232C 连接通过 OSA 5585B PRS 的 LM 进行本地管理通过 OSA SyncView™ 同步管理系统(仅作为 OSA 6500B PRC 的一部分)通过任何 IP 网络进行远程管理
核能的广泛采用增加了被排放到废物流中的放射性剖宫产(CS)的数量,这些剖记可能具有环境风险。在本文中,我们通过使用文献计量分析提供了全面的CS去除水平进展的摘要。我们收集了与CS水性治疗有关的1580篇文章,该文章在2012年至2022年之间在Web of Science数据库上发表。通过应用文献计量分析与网络分析结合使用,我们揭示了在CS去除水域中的研究分布,知识库,研究热点和尖端技术。我们的发现表明,在CS拆除研究方面,中国,日本和韩国是最有生产力的国家。此外,历史事件和环境威胁可能会导致在亚洲国家的研究中,对CS的撤离以及亚洲国家之间的强大国际合作有助于研究。详细的关键词分析揭示了CS水溶液的主要知识库,并突出了基于吸附的方法治疗CS污染的潜力。此外,结果表明,功能材料的探索是CS删除领域中流行的研究主题。自2012年以来,包括普鲁士蓝色,氧化石墨烯,水凝胶和纳米粘剂在内的新型材料,由于其较高的CS去除能力,已广泛研究。根据详细信息,我们报告了有关CS水性水的最新研究趋势,并提出了未来的研究方向,并描述了与有效CS治疗相关的挑战。此科学计量审查提供了对当前搜索热点和尖端趋势的见解,除了有助于发展这一关键研究领域的发展。
4.8.2 早期裂变产物释放试验 ......................................4-19 4.8.3 化学开发科 .........。。。。。。。。。。。。。。。。。。。。。。。。....4-20 4.8.4 重新开始裂变产物释放试验 ..............................4-20 4.8.5 听证会和调查支持。........。。。。。。。。。。。。。。。。。。。。。。。。......4-21 4.8.6 对TMI-2事故的响应。.............。。。。。。。。。。。。............4-21 4.8.7 TMI-2 事故总统委员会(Kemeny 委员会)。.....4-22 4.8.8 TMI-2 事故前后的铯、碘和碘化铯。......4-23 4.8.9 TMJ 后 LWR 研究 ..............。。。。。。。。。。。。。。。。。。。。。。。。......4-24 4.8.10 燃料释放裂变产物。, ..............。。。。。。。。。。。。。。。。。。。。。。4-24
课程概述:带电粒子动力学的审查;气排放基本面;离子源的分类;横向和纵向粒子束动力学;带有和没有空间充电的光束光学器件;离子源的提取系统;离子源的类型 - 签名电离量表(PIG),电子回旋谐振(ECR),真空弧,duoplasmatron,射频(RF)和snics离子源(通过cesium溅射的负离子来源);离子源的真空技术,离子源的光束诊断。
在初级原子铯喷泉钟的不确定性预算中,对超精细时钟跃迁的频率牵引偏移的评估,迄今为止都是基于为铯束钟开发的方法,这种偏移是由其附近跃迁的意外激发(拉比和拉姆齐牵引)引起的。我们重新评估了喷泉钟中的这种频率牵引,并特别关注了初始相干原子态的影响。我们发现,由于亚能级粒子数不平衡和初始原子基态的状态选择超精细分量中的相应相干性,拉姆齐牵引导致的频率偏移显著增强。在原子喷泉钟中对此类偏移进行了实验研究,并证明了与模型预测的定量一致性。
从表 I 中可以看出,2001 年的频率不确定度主要由冷铯原子碰撞产生的自旋交换偏移所致。事实上,这种偏移被预测为最“麻烦的原子喷泉系统效应”[I]。从那时起,几种新技术已被用于解决喷泉频率标准中自旋交换偏移的估计问题 [2, 3]。自旋交换偏移不再是当今使用的最佳喷泉频率标准的主要问题。在表 I 中,我们显示自旋交换不确定度在 2008 年降低到 Of / fo ~ 7 X 10- 17 ,远小于与黑体辐射偏移和微波效应相关的频率不确定度。这种趋势在各个实验室的其他铯频率标准中得到了呼应。