改善胆管癌患者(CCA)的生存率长期以来已被证明具有挑战性,尽管如今对这种疾病的治疗正在进行中。生存结局的历史不变性和已知有效治疗该疾病的有效药物的数量有限增加了旨在识别遗传靶向命中率的研究数量,这些研究可以有效,这对新疗法有效。在这方面,从肿瘤组织或无细胞的DNA(CFDNA)开始的分子分析的可行性增加导致人们对CCA生物学的了解增加了。肝内CCA(ICCA)和肝外CCA(ECCA)表现出可行的基因组改变的不同且典型的模式,这为治疗干预提供了机会。本综述文章将总结有关ICCA和ECCA基因组改变的当前知识,提供有关使用肿瘤组织或CFDNA进行基因组分析的主要技术的信息,并在该疾病中与靶向药物进行简要讨论主要的临床试验。
(1) Developing and deploying biomarkers into novel diagnostics (2) Liquid biopsy: circulating biomarkers: cfDNA, RNA, EVs (3) Urine biomarkers for early cancer surveillance and disease management (4) Discovery of DNA methylation biomarker for cancer and complex diseases (5) Electrochemiluminescence technology in the detection of pathogens (6) Next-generation tools and technology at护理点
cfDNA,无细胞的DNA; CTC,循环的肿瘤细胞; ctDNA,循环肿瘤DNA;电动汽车,细胞外囊泡; FFPE,福尔马林固定,石蜡包裹; LOD,检测极限; TEP,受肿瘤教育的血小板; TME,肿瘤微环境。图像改编自Alba-Bernal A等人。ebiomedicine。2020; 62:103100。
摘要。癌症患者的外周血“生理上”呈现出源自原发性或转移性部位的细胞和细胞成分,包括循环肿瘤细胞(CTC),循环游离DNA(CFDNA)和含有蛋白质,脂质,脂质和核酸的外部循环。一词循环肿瘤DNA(CTDNA)指示CfDNA的一部分,该部分源自原发性肿瘤和/或转移性部位,携带肿瘤特异性遗传或表观遗传学改变。CTDNA的分析在癌症管理的各个阶段都有巨大的潜在应用,包括早期诊断癌症,驾驶员改变,监测治疗反应和耐药机制的检测。因此,CTDNA有可能通过从组织到外周血作为信息来源来深刻改变当前的临床实践。在此,我们回顾了有关CTDNA在胆道癌(BTC)患者中的潜在作用的当前文献,特别关注这种高度侵略性疾病的状态技术和未来观点。
目的。从转移性cast割敏感的疾病癌(MCSPC)到cuast割耐药性(MCRPC)的进展表明,前列腺癌的致命表型。鉴定与MCRPC相关的基因组改变可能有助于发现药物开发的新靶标。在大多数患者中,由于仅骨转移的占主导地位,接受肿瘤活检是具有挑战性的。在这项研究中,我们假设机器学习(ML)算法可以鉴定出将MCRPC与MCSPC区分开的基因组改变(GAS)的临床相关模式,如下一代无循环细胞DNA(CFDNA)的下一代测序(NGS)所评估。实验设计。收集了来自转移性前列腺癌男性的回顾性临床数据。包括在临床实验室改进修订(CLIA) - 诊断MCSPC或MCRPC时进行的cfDNA NG的男性。使用监督和无监督的ML算法的组合用于获得对将MCRPC与MCSPC区分开的基因组特征的可解释的,可能可行的见解。
DNA,并使用贴纸确定DIN评分。使用XGEN CFDNA和FFPE DNA库Prep V2 MC Kit从DNA的25 ng输入中制备示例库,并带有UG库放大套件和自定义IDT索引引物等效于XGEN索引引物,以实现Ultima P1。在图1中,挂毯痕迹(安捷伦)显示了从低质量的FFPE样品中生成的PCR放大库。即使在DIN得分低的情况下也产生了质量库,而没有任何适配器二聚体的证据。表2显示了从UG 100序列上的12 XGEN CFDNA和FFPE库中获得的质量测序指标。图书馆的读取与参考基因组有很高的读数,并且在DIN水平不同的样品中的结果一致。数据显示较低的Indel,不匹配和嵌合体速率以及Q20高的Q20,表明在UG 100系统上生成了质量测序读数。表表示三个重复的平均值。
图4在早期检测设置中CFDNAME得分的灵敏度和特异性。在所有样本中或具有较低或更高GDNA污染的样本中都证明了所有度量。gDNA污染,并计算了一个比率(见图S3)。的样品高于中值CfDNA/gDNA比率较低,反之亦然。(a)UKFOCS样本中CFDNAME得分的特异性。(b)所有卵巢癌患者中CFDNAME评分的敏感性,(c)来自高危卵巢癌患者的样本,或(D)高危卵巢癌患者的样本,<诊断为1年。对于具有匹配的CA125数据的样品,CFDNAME,CA125和组合得分(当CFDNAME或CA125呈阳性时为阳性)在(E)所有癌症或(F)高风险癌症中,无论GDNA污染如何。CA125和组合得分重叠,可能是由于样本量较小的数据量有限。(g,h)评估CA125负面样本中的灵敏度和特异性,包括所有或仅是高风险癌症。
Illumina无细胞的DNA准备富集是一种基于连接的测定法,该测定法使用单个杂交步骤进行快速文库制备(图2)。富集的无细胞DNA制备与来自Illumina的用户富集寡核苷酸兼容。使用来自Illumina的免费在线DesignStudio™工具,基于您指定的目标基因列表的来源自定义丰富面板。Dive designStudio工具与单链DNA(ssDNA)富集探针和双链DNA(DSDNA)富集V2探针兼容。为了增强内容可移植性,可以将无细胞的DNA准备富集与综合DNA技术和Twist Bioscience的DSDNA探针一起使用。该套件可容纳55-2000 kb ssDNA和70-2000 kb dsdna面板含量,从而实现灵活的研究设计。在〜8.5–9.5小时内准备好的测序库,只有〜2.5–3小时的动手时间,使研究人员可以在一天内从提取的CFDNA转变为测序。为了最大程度地效率和灵活性,该试剂盒与使用基于市售柱或珠的纯化方法直接从外周血或等离子体中提取的CFDNA兼容。
通过谱系可塑性和发散的克隆进化(3,5-7)。CRPC-NE患者通常通过类似于小细胞肺癌(SCLC)的化学疗法方案进行积极治疗,并且还在进行几项CRPC-NE指导的临床试验。当前CRPC-NE的诊断仍然存在,因为需要转移活检以及室内肿瘤异质性。浆细胞-FRE-FREDNA(CFDNA)的DNA测序是一种无创的工具,可检测CER中的体细胞改变(8)。但是,与CRPC-Adeno相比,癌症特异性突变或拷贝数的变化仅在CRPC-NE中适度富集(3,9)。相反,我们和其他人观察到与CRPC-NE相关的广泛的DNA甲基化变化(3,10),并且可以在CFDNA中检测到这种变化(11,12)。DNA甲基化主要是在CpG二核苷酸上进行的,并且与广泛的生物学过程有关,包括调节基因的表达,细胞命运和基因组稳定性(13)。此外,DNA甲基化是高度组织特异性的,并提供了强大的信号来对原始组织进行反v,从而允许增强循环中低癌部分的检测(16、17),并已成功地应用于早期检测和监测(18,19)。如前所述,可以用甲硫酸盐测序来测量基础分辨率下的DNA甲基化,该测序为每种覆盖的CpG提供了一小部分甲基化的胞质的β值的形式,范围为0(无甲基化)至1(完全甲基化)。低通序测序遭受低粒度,并以粗分辨率捕获所有区域。原则上,诸如全基因组Bisulfite CFDNA测序(WGB)之类的方法可以很好地了解患者的疾病状况,并具有最佳的甲基化含量信息。实际上,鉴于高深度全基因组测序的成本,WGB的低通型变种适用于大规模的临床研究。鉴于此上下文中的大多数CPG站点可能是非信息或高度冗余的,我们旨在将测序空间减少到最小设置
通过谱系可塑性和发散的克隆进化(3,5-7)。CRPC-NE患者通常通过类似于小细胞肺癌(SCLC)的化学疗法方案进行积极治疗,并且还在进行几项CRPC-NE指导的临床试验。当前CRPC-NE的诊断仍然存在,因为需要转移活检以及室内肿瘤异质性。浆细胞-FRE-FREDNA(CFDNA)的DNA测序是一种无创的工具,可检测CER中的体细胞改变(8)。但是,与CRPC-Adeno相比,癌症特异性突变或拷贝数的变化仅在CRPC-NE中适度富集(3,9)。相反,我们和其他人观察到与CRPC-NE相关的广泛的DNA甲基化变化(3,10),并且可以在CFDNA中检测到这种变化(11,12)。DNA甲基化主要是在CpG二核苷酸上进行的,并且与广泛的生物学过程有关,包括调节基因的表达,细胞命运和基因组稳定性(13)。此外,DNA甲基化是高度组织特异性的,并提供了强大的信号来对原始组织进行反v,从而允许增强循环中低癌部分的检测(16、17),并已成功地应用于早期检测和监测(18,19)。如前所述,可以用甲硫酸盐测序来测量基础分辨率下的DNA甲基化,该测序为每种覆盖的CpG提供了一小部分甲基化的胞质的β值的形式,范围为0(无甲基化)至1(完全甲基化)。低通序测序遭受低粒度,并以粗分辨率捕获所有区域。原则上,诸如全基因组Bisulfite CFDNA测序(WGB)之类的方法可以很好地了解患者的疾病状况,并具有最佳的甲基化含量信息。实际上,鉴于高深度全基因组测序的成本,WGB的低通型变种适用于大规模的临床研究。鉴于此上下文中的大多数CPG站点可能是非信息或高度冗余的,我们旨在将测序空间减少到最小设置