SCBUILD/0109致力于通过SCBUILD/0109能源过渡,SCBUILD/0109过渡室和Scbuild/0109行业过渡来建立环境社会治理ESG计划项目。scbuild/0109希望与包括媒体,股票经纪人,投资银行和分析师在内的所有公共和私营部门上诉和联合力量,20至30岁的年轻一代,以促进人们对全球气候变化威胁的认识,对人类健康健康和行星健康和Scbuild and Speed and Speed and Speed和C.3.4 C.3.4 C. 3.4 C. 3.4 C. 3.4 C. 3.4 C. 3.4 C. 3.4政府间面板气候变化或IPCC的系统跨系统的适应选项,以防止2°C以上的全球变暖温度。这项承诺与SC房地产建设者Berhad或Scbuild/0109董事长兼董事总经理/首席执行官的声明是2023年,2021年和2020年的声明。In line with BUY SCBUILD/0109 AT BURSA MALAYSIA, OUR FUTURE AND OUR FUTURE GENERATIONS AT SCBUILD/0109, INVEST SCBUILD/0109 FOR LONG TERM IN MALAYSIA, ASEAN MEMBERS COUNTRIES IN ASIA > SCBUILD/0109 COMMITTED TO BUILD ENVIRONMENTAL • SOCIAL • GOVERNANCE ESG INITIATIVES PROJECTS > SCBUILD/0109 BEGIN MOVING FORWARD YEAR 2020 TO 2030 > SCBUILD/0109致力于达到零碳排放年度2050年> SCBUILD/0109股东联合•超过2100年。
农业,合作与农民福利部联合秘书(园艺和MIDH),农业,合作和农民福利部,新德里克里希巴万(Krishibhawan)(电话。01 1-23384309,23382508/电子邮件:Ismidh:AGF!@g-o-y-jn,K.n。Verma,董事(HORT),联系No。01 1-23382383,电子邮件ID:kn*v€-n0a-@flgj“ N,Shri R. P. Meena DC(Hort。),联系NO -011-23071325,电子邮件ID:)2。Micro中小型企业部联合秘书(MSME),Udyogbhawan,Rafi Marg,新德里-110001,TE | .23063283,FAX.23062336(电子邮件。
身体残疾一直是我们社区面临的一个大问题。衰老、疾病和其他变量都是造成这些问题的原因。这就是为什么电动轮椅被设计用来帮助身体残疾人的原因。轮椅使用者已经接触过各种旨在提高其行动能力的辅助技术。因此,不同的辅助技术最近在帮助轮椅使用者移动方面发挥了重要作用,这是因为技术变化太快了。最近流行的辅助技术包括操纵杆、脑机接口、语音识别、舌头驱动系统、眼动追踪器和吸气和吹气。然而,由于某些国家/地区个人之间的技术差距,一些最有益的辅助技术变得难以利用。本研究的目的是研究和回顾这些身体残疾辅助技术的比较研究。在研究中,将舌头驱动系统、眼动追踪器、语音识别和吸气和吹气技术与操纵杆辅助技术进行了比较。比较基于选定的参数,包括可用性命令、疲劳、响应时间、信息传输速率、效果和成本。根据研究结果,研究人员提出了适合发展中国家的配备辅助技术的轮椅设计方案。关键词:身体残疾、电动轮椅、辅助技术、发展中国家。_______________________________________________________________________________________________ 1. 引言
[1] F. Bonaccorso,Z。Sun,T。Hasan,A。C。Ferrari。 石墨烯光子学和光电子学。 nat。 光子学。 2010,4,611-622。 [2] D. Pesin,A。H。MacDonald。 石墨烯和拓扑绝缘子中的旋转和伪辛酸。 nat。 mater。 2012,11,409-416。 [3] K. Zhang,Q.Fu,N。Pan,X。Yu,J。Liu,Y。Luo,X。Wang,J。Yang,J。Hou。 通过催化扫描探针光刻直接在氧化石墨烯上直接编写电子设备。 nat。 社区。 2012,3,1194。 [4] W. Han,R。K. Kawakami,M。Gmitra,J。Fabian。 石墨烯旋转。 nat。 纳米技术。 2014,9,794-807。 [5] Z. Chen,A。Narita,K.Müllen。 石墨烯纳米纤维:地下合成和集成到电子设备中。 高级材料。 2020,32,2001893。 [6] N. P. De Leon,K。M. Itoh,D。Kim,K。K. Mehta,T。E. Northup,H。Paik,H。Paik,B。S. Palmer,N。Samarth,S。Sangtawesin,D。W. Steuerman。 材料挑战量子计算硬件的挑战和机会。 科学。 2021,372,EABB2823。 [7] C. Tao,L。Jiao,O。V. Yazyev,Y.-C。 Chen,J。Feng,X。Zhang,R。B. Capaz,J。M. Tour,A。Zettl,S。G. Louie等。 在空间解析手性石墨烯纳米纤维的边缘状态。 nat。 物理。 2011,7,616-620。 [8] M. Slota,A。Keerthi,W。K。Myers,E。Tretyakov,M。Baumgarten,A。Ardavan,H。Sadeghi,C。J。Lambert,A。Narita,K.Müllen等。 自然。Sun,T。Hasan,A。C。Ferrari。石墨烯光子学和光电子学。nat。光子学。2010,4,611-622。[2] D. Pesin,A。H。MacDonald。石墨烯和拓扑绝缘子中的旋转和伪辛酸。nat。mater。2012,11,409-416。[3] K. Zhang,Q.Fu,N。Pan,X。Yu,J。Liu,Y。Luo,X。Wang,J。Yang,J。Hou。通过催化扫描探针光刻直接在氧化石墨烯上直接编写电子设备。nat。社区。2012,3,1194。[4] W. Han,R。K. Kawakami,M。Gmitra,J。Fabian。石墨烯旋转。nat。纳米技术。2014,9,794-807。[5] Z. Chen,A。Narita,K.Müllen。石墨烯纳米纤维:地下合成和集成到电子设备中。高级材料。2020,32,2001893。[6] N. P. De Leon,K。M. Itoh,D。Kim,K。K. Mehta,T。E. Northup,H。Paik,H。Paik,B。S. Palmer,N。Samarth,S。Sangtawesin,D。W. Steuerman。材料挑战量子计算硬件的挑战和机会。科学。2021,372,EABB2823。[7] C. Tao,L。Jiao,O。V. Yazyev,Y.-C。 Chen,J。Feng,X。Zhang,R。B. Capaz,J。M. Tour,A。Zettl,S。G. Louie等。在空间解析手性石墨烯纳米纤维的边缘状态。nat。物理。2011,7,616-620。[8] M. Slota,A。Keerthi,W。K。Myers,E。Tretyakov,M。Baumgarten,A。Ardavan,H。Sadeghi,C。J。Lambert,A。Narita,K.Müllen等。自然。磁边状态和石墨烯纳米骨的相干操纵。2018,557,691-695。[9] D. Wang,D.-L。 Bao,Q. Zheng,C.-T。 Wang,S。Wang,P。Fan,S。Mishra,L。Tao,Y。Xiao,L。Huang等。具有可调边缘状态的扭曲的双层锯齿形 - 锯齿形纳米替伯恩连接。nat。社区。2023,14,1018。[10] M. Kohmoto,Y。长谷川。零模式和蜂窝晶格的边缘状态。物理。修订版b。2007,76,205402。[11] S. Xia,Y。Liang,L。Tang,D。Song,J。Xu,Z。Chen。光子实现的普通类型的石墨烯边缘状态表现出拓扑平坦带。物理。修订版Lett。 2023,131,013804。 [12]ç。 Ö。 Girit,J。C. Meyer,R。Erni,M。D. Rossell,C。Kisielowski,L。Yang,C.-H。 Park,M。F. Crommie,M。L. Cohen,S。G. Louie等。 边缘的石墨烯:稳定性和动力学。 科学。 2009,323,1705-1708。 [13] S. Mishra,G。Catarina,F。Wu,R。Ortiz,D。Jacob,K。Eimre,J。Ma,C。A。Pignedoli,X。Feng,P。Ruffieux等。 观察纳米谱链链中的分数边缘激发。 自然。 2021,598,287-292。 [14] X. Li,X。Wang,L。Zhang,S。Lee,H。Dai。 化学得出的超齿石墨烯纳米替伯苯半导体。 科学。 2008,319,1229-1232。 [15] G. Z. Magda,X。Jin,I。Hagymási,P。Vancsó,Z。Osváth,P。Nemes-Incze,C。Hwang,L。P.Biró,L。Tapasztó。 自然。 2014,514,608-611。 nat。Lett。2023,131,013804。[12]ç。 Ö。 Girit,J。C. Meyer,R。Erni,M。D. Rossell,C。Kisielowski,L。Yang,C.-H。 Park,M。F. Crommie,M。L. Cohen,S。G. Louie等。边缘的石墨烯:稳定性和动力学。科学。2009,323,1705-1708。 [13] S. Mishra,G。Catarina,F。Wu,R。Ortiz,D。Jacob,K。Eimre,J。Ma,C。A。Pignedoli,X。Feng,P。Ruffieux等。 观察纳米谱链链中的分数边缘激发。 自然。 2021,598,287-292。 [14] X. Li,X。Wang,L。Zhang,S。Lee,H。Dai。 化学得出的超齿石墨烯纳米替伯苯半导体。 科学。 2008,319,1229-1232。 [15] G. Z. Magda,X。Jin,I。Hagymási,P。Vancsó,Z。Osváth,P。Nemes-Incze,C。Hwang,L。P.Biró,L。Tapasztó。 自然。 2014,514,608-611。 nat。2009,323,1705-1708。[13] S. Mishra,G。Catarina,F。Wu,R。Ortiz,D。Jacob,K。Eimre,J。Ma,C。A。Pignedoli,X。Feng,P。Ruffieux等。观察纳米谱链链中的分数边缘激发。自然。2021,598,287-292。[14] X. Li,X。Wang,L。Zhang,S。Lee,H。Dai。化学得出的超齿石墨烯纳米替伯苯半导体。科学。2008,319,1229-1232。 [15] G. Z. Magda,X。Jin,I。Hagymási,P。Vancsó,Z。Osváth,P。Nemes-Incze,C。Hwang,L。P.Biró,L。Tapasztó。 自然。 2014,514,608-611。 nat。2008,319,1229-1232。[15] G. Z. Magda,X。Jin,I。Hagymási,P。Vancsó,Z。Osváth,P。Nemes-Incze,C。Hwang,L。P.Biró,L。Tapasztó。自然。2014,514,608-611。nat。纳米容器上的磁性磁条抓取纳米骨。L. Britnell,R。V。Greena,M单身,被忽略和可忽略的忽略导电转换。公社。2013,4,1794。[17] P. Ruffieux,S。Wang,B。Yang,C。Sánchez,J。Liu,T。Dienel,L。Talliz,P。Shinde,C。A。Pignedoli,D。Passerone和Al。自然。2016,531,489-4
“我们完全致力于在新的能量车智能中夺取高昂的立场,并与行业发展和新兴行业趋势保持同步,以维持全球汽车市场的稳定增长,”中国人民政治咨询会议委员会成员王·莱肯(Wang Laichun
或活动美国精神病学协会,2013年)。根据美国精神病学协会(2013年),自闭症的患病率为1%。 在ASD患者中经常发现感觉困难(Kojovic等人,2019年),特别是体感系统困难,例如异常的皮肤敏感性[Asmika等,2018; Zhong等人,2013年](包括压力检测)和本体感受。 这些感觉异常可能会导致社会发展受损的病理生理过程[]。 本体感受是人体正在进行的空间配置的感觉注册。 它包括身体段在太空中的位置,力和运动速度以及重力和身体平衡的整合。 本体感受会影响行为调节和运动控制]。 Blanche等。 表明,患有ASD的儿童目前的本体感受的处理困难与其他发育障碍儿童及其通常发展的儿童不同。 但是,Morris等人,2015年,Fuentes等人,2011年没有确认实验范式中的这些本体感受困难。 缺陷可能主要依赖于多感官集成[]。根据美国精神病学协会(2013年),自闭症的患病率为1%。感觉困难(Kojovic等人,2019年),特别是体感系统困难,例如异常的皮肤敏感性[Asmika等,2018; Zhong等人,2013年](包括压力检测)和本体感受。这些感觉异常可能会导致社会发展受损的病理生理过程[]。本体感受是人体正在进行的空间配置的感觉注册。它包括身体段在太空中的位置,力和运动速度以及重力和身体平衡的整合。本体感受会影响行为调节和运动控制]。Blanche等。表明,患有ASD的儿童目前的本体感受的处理困难与其他发育障碍儿童及其通常发展的儿童不同。但是,Morris等人,2015年,Fuentes等人,2011年没有确认实验范式中的这些本体感受困难。缺陷可能主要依赖于多感官集成[]。
在本文中,我们介绍了有关电动轮椅高级驾驶员援助系统的开发的工作。我们的项目旨在提高流动性降低的人的自主权。进行临床研究后,我们确定了几个用例。在本文中,我们在室内环境中介绍了椅子周围环境中兴趣点的检测,本地化和跟踪,即:门,手柄,照明开关等。目的不仅是为了提高椅子周围的看法,而且还可以使半自治的驾驶朝向这些目标。首先,我们将对象检测算法的Yolov3的重新应用于我们的用例。然后,我们显示了对Intel Realsense相机的使用,以进行深度估计。最后,我们描述了对跟踪3D兴趣点的排序算法的适应。为了验证我们的方法,我们在受控的室内环境中实现了一些实验。使用我们的自定义数据集测试了检测,距离估计和跟踪管道。这包括走廊,门,手柄和开关。研究的一个方案之一是为了验证所提出的平台,不仅包括对物体的检测和跟踪,还包括轮椅向其中一个感兴趣的一个点。
HC-05蓝牙模块是一种低成本设备,可在Arduino Uno和启用蓝牙设备(如智能手机或平板电脑)之间进行无线通信。它使用串行通信协议轻松交换数据。在此项目中,HC-05从智能手机应用程序接收语音命令,并将其发送到Arduino。当用户提供语音命令,例如“向前移动”或“向左移动”时,该应用将其转换为文本并通过蓝牙将其发送到HC-05。然后将命令转发到Arduino,该命令相应地控制电机。此设置使轮椅无权,使用户可以通过简单的语音命令控制其运动。
这项工作着重于开发一种创新的移动解决方案,该解决方案可以增强身体和视觉障碍的人的独立性和可访问性。提议的语音控制轮椅配备了最新的语音识别技术,使用户能够发出简单的语音命令,例如“向前”,“向后”,“左”,“左”,“右”和“停止”和“停止”来控制其运动。该系统结合了强大的麦克风阵列和噪声策略算法,以确保在包括嘈杂设置在内的各种环境中准确的语音识别。对于盲人用户,轮椅与障碍物检测传感器和听觉反馈系统集成在一起,这些传感器和听觉反馈系统提供了实时的导航援助并确保运动过程中的安全性。轮椅的设计优先考虑用户友好性,对个人需求的适应性以及负担能力,使其可容纳更广泛的人口。实施涉及使用针对区域口音和不同语言模式量身定制的数据集培训语音识别模型,以增强包容性。障碍检测机制利用超声波和红外传感器,而听觉反馈系统则采用综合语音警报来方向指导。在受控和实际情况下对身体残疾和盲人进行广泛的测试表明,导航效率提高,降低对看护者的依赖以及更高的用户满意度。该项目弥合了技术与可访问性之间的差距,使用户能够重新获得对日常生活的自主权和信心。通过利用先进的语音控制系统和安全性增强,该项目彻底改变了针对残疾人的移动解决方案,为他们提供了有效与环境互动的变革性工具。