Usman Bulla;太阳abububaked; Abdulmalic Hussain;易卜拉欣·穆罕默德·劳尔(Ibrahim Mohammed Lawal);艾哈迈德·侯赛尼(Ahmad Hussyini)易卜拉书; dalhatu祈祷4。 div><使用Ferematan Fuzzarma的Divan Health Care Wasterling Technology Opycer的选择;出售Chakrabortty; apu kumar saha div>
摘要:在演讲中,我将介绍近年来我们发表的三个不同的主题。首先,我将介绍有关栅极控制超导性的微观理论的工作[1]。最近,在许多实验中,已经报道了栅极介导的超导纳米旋转的超电流抑制。然而,到目前为止,对这些观察结果的微观理解仍在研究中。在我们的工作中,我们表明,桥表面的少量磁杂质可以显着有助于抑制超导性,因此在应用栅场时系统内部的超电流。这是因为栅场可以通过表面和超导体的磁杂质之间的交换相互作用来增强depairing。接下来,我将介绍基于基于超导体磁铁的杂种结构的Terahertz辐射检测的工作[2]:已知这些杂种结构在整个隧道交界处都表现出巨大的热电效应。基于这种巨大的热电效应,我们表明,对于在100至200 mk的温度下运行的现实检测器,能量分辨率可以低至1 MEV。这允许在1THz或以下的光子频率下进行宽带单光子分辨率。终于,我将介绍我们在带电子系统的浴室控制轨道磁性方面的工作[3]。系统浴缸的纠缠有望破坏相干的电子运动和淬火轨道磁性。物理。修订版b,108,184508/1-184508/8。[2] Subrata Chakraborty和Tero。J. Appl。在我们的工作中,我们表明,适当量身定制的浴室可以提高多播电子系统的轨道磁磁敏感性,甚至可以将轨道顺向磁反应转换为磁管磁性,因为系统浴耦合的增加。我们还展示了如何利用状态的van Hove奇异性来产生轨道磁化易感性的巨大增强。我们的工作为通过浴室工程参考控制带电子系统的轨道磁反应的可能性打开了大门:[1] Subrata Chakraborty,Danilo Nikoli´c,Juan Carlos Cuevas,Juan Carlos Cuevas,Francesco Giazotto,Angelo di Bernardo,Elio Mario Morsos cococo and Marios Cuoco)通过栅极控制的表面下降抑制超电流。T.Heikkilâa(2018)。 基于超导体 - 铁磁性连接的热电辐射检测器:量热度。 Phys。,124,123902/1–123902/7。 [3] Subrata Chakraborty和So Takei(2024)。 通过浴工程控制带电子系统的轨道磁性。 物理。 修订版 b,110,L140405/1 – L140405/5。 信,编辑的建议T.Heikkilâa(2018)。基于超导体 - 铁磁性连接的热电辐射检测器:量热度。Phys。,124,123902/1–123902/7。[3] Subrata Chakraborty和So Takei(2024)。通过浴工程控制带电子系统的轨道磁性。物理。修订版b,110,L140405/1 – L140405/5。信,编辑的建议
Buhrman,Cleve和Wigderson(stoc'98)表明,对于每个布尔函数f:{ - 1,1,1,1,1,1,1,1} n→{ - 1,1,1,1}和g∈{and 2,xor 2},有界的 - error-error-error量量子通信的量子f for f o(q q q o q o q o(q q(q f)q q o q q o q q for n q o(q q q o q o q o q(q) f的复杂性。这是通过使用一轮O(log n)量子的通信来实现每个查询的Alice来实现F的最佳量子查询算法。这与经典环境形成鲜明对比,在经典环境中,很容易显示R CC(f o g)≤2r(f),其中r cc和r分别表示有界的 - 误差通信和查询复杂性。Chakraborty等。 (CCC'20)表现出一个总功能,需要BCW模拟中的log n开销。 这确定了一个令人惊讶的事实,即在某些情况下,量子减少本质上比经典降低更昂贵。 我们以多种方式改善了它们的结果。Chakraborty等。(CCC'20)表现出一个总功能,需要BCW模拟中的log n开销。这确定了一个令人惊讶的事实,即在某些情况下,量子减少本质上比经典降低更昂贵。我们以多种方式改善了它们的结果。
6 Barseghyan, MG;Mughnetsyan, VN;Perez,;Kirakosyan, AA;Laroze, D 杂质对强 THz 激光场下 GaAs/Ga1-xAlxAs 量子环中 Aharonov-Bohm 振荡和带内吸收的影响 PHYSICA E-低维系统与纳米结构 卷:111 页:91-97 出版日期:2019 年 7 月,DOI:10.1016/j.physe.2019.03.003 WOS:000465001500012 7 Chakraborty, Tapash;Manaselyan, Aram; Barseghyan, Manuk,在 ZnO 界面处点环纳米结构中电子电荷和自旋分布的有效调整,PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES 卷:99 页数:63-66 出版日期:2018 年 5 月,DOI:10.1016/j.physe.2018.01.013,WOS:000428346500009 8 Baghramyan, Henrikh M.;Barseghyan, Manuk G.;Kirakosyan, Albert A.; Ojeda, Judith H., (Bragard, Jean, Laroze, David 通过太赫兹激光场对双量子环各向异性特性的建模,SCIENTIFIC REPORTS 卷:8 文章编号:6145 出版日期:2018 年 4 月 18 日,DOI:10.1038/s41598-018-24494-w,WOS:000430279300003 9 Chakraborty, Tapash;Manaselyan, Aram;Barseghyan, Manuk;Laroze, David 单量子环中电子态的可控连续演化 PHYSICAL REVIEW B 卷:97 期:4 文章编号:041304 出版日期:2018 年 1 月 31 日,DOI:10.1103/PhysRevB.97.041304, WOS:000423656600001 10 Baghramyan, Henrikh M.; Barseghyan, Manuk G.; Laroze, David 强太赫兹辐射下横向耦合量子环的分子光谱 SCIENTIFIC REPORTS 卷:7 文章编号:10485 出版日期:2017 年 9 月 5 日,DOI:10.1038/s41598-017-10877-y,WOS:000409309300073 11 Chakraborty, Tapash;Manaselyan, Aram;Barseghyan, Manuk ZnO 界面处人造原子的相互作用驱动的独特电子态 JOURNAL OF PHYSICS-Condensed MATTER 卷:29 期:21 文章编号:215301 出版日期:2017 年 6 月 1 日,DOI: 10.1088/1361-648X/aa6b97,WOS:000400092400001 12 查克拉博蒂,塔帕什;马纳塞良,阿兰; Barseghyan,Manuk,ZnO 量子环中相互作用电子的不规则阿哈罗诺夫-玻姆效应《凝聚态物理学杂志》卷:29 期:7 文章编号:075605 发布时间:2 月 22 日,DOI:10.1088/1361-648X/aa5168, WOS:000391964700003 13 Barseghyan,MG;基拉科相,AA; Laroze, D., 激光驱动的二维量子点和量子环中的带内光学跃迁光通信卷:383 页:571-576 出版日期:2017 年 1 月 15 日,DOI:10.1016/j.optcom.2016.09.037,WOS:000386870700088 14 Laroze, D.; Barseghyan, M.; Radu, A.; (Kirakosyan, AA 二维量子点和量子环中的激光驱动杂质态 PHYSICA B-CONDENSED MATTER 卷:501 页:1-4 出版日期:2016 年 11 月 15 日,DOI:10.1016/j.physb.2016.08.008,WOS:000386815500001 15 Barseghyan, MG,单个量子环中的带内光吸收:静水压力和强激光场效应 OPTICS COMMUNICATIONS 卷:379 页:41-44 出版日期: 2016年11月15日 DOI: 10.1016/j.optcom.2016.05.065, WOS:000378770600008 7 Manaila-Maximean, D.; Cirtoaje,C.;达尼拉,O.; Donescu,D.新型胶体系统:磁铁矿-
本文是Teri关于印度净零净旅行的工作组的倡议,只是在研究所在能源过渡方面的工作的转变。我们非常感谢Teri的工作组同事,他们给出了本讨论文件的意见和建议。我们感谢杰出研究员R Rashmi先生的宝贵建议和投入。我们要感谢Girish Sethi先生,A K Saxena先生和Arupendra Nath Mullick先生的指导和宝贵的见解。我们还要对Teri同事,Varun Grover先生,Rahul Chakraborty先生,Sharif Qamar先生,Saswata Chaudhury先生,Meenu Saini女士,Mayank Aggarwal先生和Sobhanbabu Prk先生的投入。
摘要:作为一种皮肤治疗,米水变得越来越流行。据说有助于治疗各种皮肤疾病。尽管水稻水具有真正的好处,但科学尚未充分验证其许多主张。这项研究的目的是使用发酵水稻水生物合成纳米颗粒,并进行合成纳米颗粒的抗菌活性。为了合成银纳米颗粒,将大米经过48小时的发酵过程,以获得发酵水(FRW),该水(FRW)用作纳米颗粒合成的生物降低和稳定剂,并用作抗菌药物。紫外可见光谱用于表征颗粒。针对与皮肤病和感染相关的常见临床细菌和真菌分离株(葡萄球菌金黄色葡萄球菌,白色念珠菌和Trichophyphophyton rubrum),评估了FRW-AGNP的抗菌潜力。将FRW-AGNP的抑制作用与单独的FRW进行了比较。胶体AGNP的颜色为褐色,最大吸收波长为380nm,表明纳米颗粒已形成。frw-agnps表现出针对金黄色葡萄球菌和白色葡萄球菌菌株的抗菌活性,分别抑制其生长,分别为21.3 mm和22.0 mm。相比之下,FRW表现出较低的抑制作用,抑制区为13.3 mm和13.0 mm,针对各自的菌株,强调了FRW-AGNPS的增强的抗菌和抗真菌活性,而不是单独使用FRW。2018)。但是,此外,FRW-Agnps以100 µg/ml的浓度完全抑制毛植物rubrum的生长。这项研究使用发酵的水稻水成功地生物合成了银纳米颗粒,并证明了它们具有与皮肤病和感染相关的临床相关真菌菌株的有希望的抗菌特性。关键词:发酵稻水,纳米技术,纳米颗粒,银纳米粒子,绿色合成。引言ICE(Oryza sativa)是世界近一半人口的主食,几乎可以在亚洲提供所有日常卡路里。米饭通常在浸泡或沸腾的米饭后消耗,但米饭通常在世界各地的许多食物准备程序中都丢弃(Marto等人。根据Chakraborty(2022)的说法,传统上认为米水可以增强头发的厚度和美丽,其用法可追溯到日本1000多年。此外,由于米饭在解决各种皮肤问题方面的好处,米水作为皮肤治疗越来越受欢迎,因此它是一种有吸引力的选择,因为它很容易在家中准备并具有成本效益(Chakraborty,2022年)。值得注意的是,水稻水包含某些表现出皮肤保护和修复特性的成分(Chakraborty,2022)。
3.2模型解释及其在EO中支持的链接方法。此处显示的是对EO模型中其他类的解释方法(模型解释器)的依赖性,b)模型解释器和解释输出的多样性(例如,显着性方法提供了局部说明),最后c)用户中心说明的依赖性解释,对相似的解释,对模型的解释,对模型的解释输出,对模型的解释输出。 从S. Chari,O。Seneviratne,M。Ghalwash,S.Shirai,D.M。复制。 Gruen,P。Meyer,P。Chakraborty和D.L. McGuinness,“解释本体论:用于支持以用户为中心的解释的通用语义,语义代表”,Sminantic Web J.,第1卷。 预压,pp。 1-31,2023年5月,doi:10.3233/sw -233282,经ios出版社的许可。 ©2023。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 41是对EO模型中其他类的解释方法(模型解释器)的依赖性,b)模型解释器和解释输出的多样性(例如,显着性方法提供了局部说明),最后c)用户中心说明的依赖性解释,对相似的解释,对模型的解释,对模型的解释输出,对模型的解释输出。从S. Chari,O。Seneviratne,M。Ghalwash,S.Shirai,D.M。复制。Gruen,P。Meyer,P。Chakraborty和D.L.McGuinness,“解释本体论:用于支持以用户为中心的解释的通用语义,语义代表”,Sminantic Web J.,第1卷。预压,pp。1-31,2023年5月,doi:10.3233/sw -233282,经ios出版社的许可。©2023。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41
会议委员会联合主席 Neeraj Magotra 西新英格兰大学 neeraj.magotra@wne.edu Randy Geiger 爱荷华州立大学 r.geiger@ieee.org 技术程序委员会联合主席 Jose Silva-Martinez 德克萨斯 A&M 大学 jose-silva-martinez@tamu. edu Kourosh Rahmamai 西新英格兰大学 kourosh.rahnamai@wne.edu Robert Brennan 安森美半导体公司 Robert.Brennan@onsemi. com 财务 Robert (Bob) Alongi r.alongi@ieee.org 出版物 Stephen Adamshick 西新英格兰大学 stephen.adamshick@wne. edu 特别会议 Ayman Fayed 俄亥俄州立大学 fayed.1@osu.edu John Burke 西新英格兰大学 john.burke@wne.edu Sudipto Chakraborty IBM schakraborty@ibm.com Samuel Palermo 德州农工大学 spalermo@tamu.edu 教程 Gabriel Rincon-Mora 佐治亚理工学院 rincon-mora@gatech.edu Nicole McFarlane 田纳西大学 mcf@utk.edu
1. Chandrasekhar, K.、Pradhan, B.、Roychowdhury, R.、Dubey, VK 2021. 通过基因操作改良小麦(Triticum spp.);在:转基因作物的现状、前景和挑战,由 Kishor, PB Kavi, Rajam, MV、Pullaiah, T. 编辑。Springer Singapore(已接受出版),ISBN 978-981-15-5897-9_3。https://doi.org/10.1007/978-981-15-5897-9_3 2. Chakraborty, K.、Mondal, S.、Ray, S.、Samal, P.、Pradhan, B.、Chattopadhyay, K.、Kar, MK、Swain, P.、Sarkar, RK 2020。组织耐受性与离子鉴别相结合可以最大程度地降低水稻耐盐性的能量成本。植物科学前沿:11。265 https://www.frontiersin.org/article/10.3389/fpls.2020.00265。3. Pradhan, B., Chakraborty, K., Prusty, N., Deepa, Mukherjee, A., Chattopadhyaya, K., Sarkar, RK 2019。高分辨率叶绿素荧光成像系统证明了耐盐和部分淹没复合胁迫的水稻基因型的区分和表征。功能植物生物学:46 (3), 248-261。https://doi.org/10.1071/FP18157。 4. Pradhan, B., Jangid, K., Sarwat, M., Bishi, SK 2019 . 组蛋白在叶片衰老过程中的作用:在:植物衰老信号传导,作者:Sarwat M 和 Tuteja N. Academic Press,第 187-197 页,ISBN 9780128131879。https://doi.org/10.1016/B978-0-12-813187-9.00011-1。5. Prusty, N # ., Pradhan, B # ., Deepa., Chattopadhyaya, K., Patra, BC, Sarkar, RK 2018 . 耐洪水和盐分胁迫综合影响的新型水稻(Oryza sativa L.)种质。印度植物遗传资源杂志:31 (3), 260-269。(# 共同第一作者,同等贡献)。6. Vijayan, J.、Senapati, S.、Ray, S.、Chakraborty, K.、Molla, KA、Basak, N.、Pradhan, B.、Yeasmin, L.、Chattopadhyay, K. 和 Sarkar, RK 2018。转录组学和生理学研究确定了水稻发芽阶段耐受缺氧的线索。环境与实验植物学:147,234-248。doi.org/10.1016/j.envexpbot.2017.12.013。7. Pradhan, B.、Tien VV、Dey, N.、Mukherjee, SK 2017。双生病毒 DNA 复制的分子生物学:病毒复制中。 Avidscience 出版物。第 2-34 页。http://www.avidscience.com/book/viral-replication/。8. Pradhan, B.、Naqvi, AR、Saraf, S.、Mukherjee, SK、Dey, N. 2015 年。番茄卷叶新德里病毒 (ToLCNDV) 反应性新型微小 RNA 在番茄中的预测和表征。病毒研究。195,183-195。doi:10.1016/j.virusres.2014.09.001。
对我们的Cheme危险团队的出色工作,可以进入国家半决赛!我们还在本科生海报比赛中有八位学生赢家!祝贺约书亚·布朗,安娜·伯森,拉卡·查克拉伯蒂,梅胡尔·杜特,哈姆扎·法鲁基,吉安娜·库德奇亚,宾朱昌黄,Chenyu li,Jeffery Li,Jeffery Li,Lauren Mellinger,Lauren Mellinger,Lucy Nugent和Hyunjun Ryh!我们的大二学术卓越奖获得了约书亚·克拉克(Joshua Clark),唐纳德·F(Donald F.此外,GT AICHE社区服务委员会有史以来首次参加K-12 STEM外展比赛!感谢Landon Lamarca和Darasimi Jakande在这个巨大的时刻所做的工作!