正在进行的能源过渡到遏制二氧化碳排放并满足不断增长的能源需求,这增强了将可再生能源整合到现有电力系统中的需求。太阳能一直在增加市场份额。多开关太阳能电池(MJSC)可以使阳光向能量的有效转化,而不会像商业化的单连接硅太阳能电池一样受到33%的限制。iii-V半导体已有效地用于空间应用和浓缩光伏(CPV)。本综述讨论了细胞级别的MJSC的工作和组成部分,以及用于空间应用和CPV的模块级别。制造程序,MJSC的材料获取,然后在引入目前的挑战,以防止MJSC实现广泛的商业化以及将来可以解决这些挑战的研究方向。
在过去的二十年中,理论和建模已成为应用化学以及分析化学、合成化学和其他化学领域的主要研究课题之一。这是由于方法论、数值方法以及计算机软件和硬件的重大改进而成为可能的。许多实验研究开始包括计算建模。计算机模拟在现代化学中的作用不可低估,有效的建模和模拟在实际应用中起着至关重要的作用,因为它可以提供对实验的见解并帮助优化系统。具体而言,模拟越来越多地被用来用计算代替危险且昂贵的实验。同时,现代材料科学和生物学实验研究的令人瞩目的进步要求进一步发展和不断扩展当今计算化学方法的适用性和准确性。对大型生物分子、纳米粒子和界面进行快速而准确的定性和定量建模成为研究的主要焦点,这需要大量的计算工作,而且在目前的技术水平下并不总是能够实现。大多数计算化学问题都是关于求解分子中电子的薛定谔方程或经典粒子系统的牛顿运动方程。因此,数学应该在新的发展中发挥核心作用。本次研讨会的主要目的是根据顶尖科学家提供的经验分析计算化学的当前需求和期望,并与方法和计算软件开发人员进行讨论。以下部分以研讨会会议为名,包括初始演讲中提出的主题以及圆桌讨论和人际谈话中提出的主题。
这种意愿也受到国家/地区法规的推动,这些法规充当“胡萝卜加大棒”的政策,以加速再工业化,从而给生产提升阶段带来更多挑战。在“胡萝卜”方面,不同的补贴计划,如 IRA(3700 亿美元)和欧盟绿色协议(1 万亿欧元),正在支持发展低温室气体至零温室气体技术的制造能力。同样的原则也适用于大西洋两岸的国防工业。这些资金背后的理念不仅是加速制造能力的发展,而且还要减少对外国关键部件的依赖——代表“大棒”的一面。这意味着,为了获得补贴,制造公司需要仔细选择供应商的来源。美国目前正在讨论的《生物安全法》也朝着同样的方向发展,如果一家公司使用“令人担忧”的生物技术公司的设备或服务,联邦贷款和与美国政府的合同将被禁止。
随着人工智能 (AI) 和物联网 (IoT) 的融合重新定义了行业、商业和经济的运作方式,对边缘节能和高性能计算的需求呈指数级增长。神经形态计算是一种新兴的计算范式,受到生物大脑的低功耗和并行处理能力的启发,克服了传统计算机架构的许多限制。最重要的是,通过在内存中执行计算,神经形态计算克服了冯·诺依曼瓶颈,从而提高了计算能力,同时节省了更多的面积和功耗。虽然已经开发出几种具有出色能效的独立神经形态芯片来运行特定的人工智能算法,但这种数字系统在与边缘传感器连接时仍然会受到影响。这是因为传感输入是非结构化的、非规范化的和碎片化的,这会给具有分离的传感和处理单元的数字系统带来巨大的能源、时间和布线开销。这就需要融合传感、内存和处理功能的内存传感技术,以充分发挥生物电子学和机器人学中使用的高度复杂的传感器和执行器系统的潜力。尽管内存传感和计算的概念还处于起步阶段,但它已经在电子皮肤和仿生眼等专业领域取得了重大进展。然而,这些主要是软件实现,与之相辅相成的硬件挑战尚未得到解决。要充分利用仿生边缘处理能力,仍存在硬件层面(材料和设备)的基本挑战需要解决。因此,“内存传感和计算:新材料和设备迎接新挑战”于去年启动,引发了对最新发展和观点的讨论。来自微电子、材料和计算机科学等多学科背景和不同地区的研究人员已经发表了与此相关的意见和/或原创作品
植物在自然界中不断受到各种环境压力,这会影响其生长,繁殖,产量和生存。全球变暖和气候变化使背景应力水平加剧,使植物对压力组合的反应成为紧迫的关注点(Mora等,2015; Mankin等,2019)。在未来几十年中,由于温室气体和气溶胶排放方案的不同,适合种植某些植物的地理区域可能会发生重大变化(图1在美国提供了一个特定的例子)。植物需要感知,分类和交流多种压力信号,然后激活下游响应,同时分配资源。因此,需要研究对多种压力暴露的反应,以应对气候变化的巨大挑战。在这个研究主题问题中,已经涵盖了非生物压力和植物免疫力的几个重要方面,这可以提供一些提示,以应对养育不断增长的世界人群的极端挑战。大米,小麦,玉米和马铃薯是世界上消费最广泛的主食,提供了超过60%的全球粮食卡路里,并且在养活不断增长的人群方面发挥了关键作用。鉴于它们对全球粮食安全的重要性,必须了解这些农作物将如何受到气候变化的影响,并制定有效的策略来管理相关风险。Singh等。 此信息对于开发有效的疾病管理实践至关重要,这些疾病管理实践可以改变环境状况,并确保美国和世界各地的小麦生产的可持续性。Singh等。此信息对于开发有效的疾病管理实践至关重要,这些疾病管理实践可以改变环境状况,并确保美国和世界各地的小麦生产的可持续性。提供了有关美国重要小麦疾病的全面摘要,涵盖了其宿主范围,症状,有利的疾病,疾病管理和综合疾病管理策略,同时考虑了未来几十年气候变化的潜在影响。高温会加剧生物应激对植物的影响。最近的研究表明,包括钙调蛋白结合蛋白CBP60G在内的胞质钙信号传导在确保植物对高温的韧性方面起着至关重要的作用(Kim等,2022),以及介导生物和非生物压力和非生物压力的感知(Marcec等人(Marcec et al。,2019年)。Carpentier等。回顾了有关生物胁迫和温度对钙信号传导的总综合作用的当前文献。作者强调了钙信号中的几个分子成分,它们在植物反应中起重要作用
程序性死亡受体 1 (PD-1) 充当 T 细胞制动器,其与配体 1 (PD-L-1) 的相互作用会干扰 T 细胞受体的信号转导。这导致肿瘤微环境中 T 细胞存活、增殖和活性受到抑制,从而导致抗癌免疫力受损。PD-1/PD-L-1 相互作用阻断在各种癌症免疫疗法中表现出显著的临床成功。迄今为止,大多数获准用于临床的 PD-1/PD-L-1 阻断剂都是单克隆抗体 (mAb);然而,由于部分患者的临床反应不佳,它们的治疗用途受到限制。mAb 还表现出肿瘤渗透性低、生产成本高以及免疫相关副作用的发生率。这强烈表明了开发新型抑制剂作为癌症免疫治疗剂的重要性。最近,直接阻断 PD-1/PD-L-1 轴的小分子抑制剂 (SMI) 的进展引起了参与癌症研究的科学界的关注。SMI 比 mAb 具有某些优势,包括半衰期更长、成本低、细胞渗透性更强以及可以口服。目前,有几种 SMI 正在开发中,作为癌症免疫疗法的潜在疗法。为了开发新的 SMI,人们探索了各种各样的结构支架,并取得了优异的成果;联苯基支架研究最多。在这篇综述中,我们分析了针对 PD-1/PD-L-1 轴用于癌症治疗的 mAb 和 SMI 的开发。总之,本综述深入探讨了与 mAb 使用相关的问题,并详细讨论了 SMI 的发展和现状。本文可为药物化学家提供关于 PD-1/PD-L-1 相互作用抑制所需的潜在结构支架的全面指南。
广告系列,或解决临时多余的能力。我们确定并讨论推动采用PayW业务模型的重要因素。音乐乐队Radiohead采用了他们的专辑“ In Rainbows”,通过使其可以在其网站上下载,让他们的粉丝决定他们想支付的钱,从而采用了最受欢迎的Payw策略之一。该策略在财务上被证明是成功的,超过了传统唱片公司销售的典型收入,产生了足够的嗡嗡声并提高了其宣传。对于数字商品(在这种情况下为数字专辑),与开发第一个数字产品的初始固定成本相比,生产的边际成本可以忽略不计。制作音乐的初始成本将是一次性投资,而每次下载几乎无需花费,因为专辑的发行与物理发行相比,这会产生巨大的成本。主要挑战是确保足够的人购买并为产品提供公允价值,以使其可持续。在这种情况下,乐队的巨大知名度发挥了关键作用,导致了重大下载并产生收入。部署付费意愿的定价策略似乎对粉丝和音乐爱好者来说特别有吸引力,他们可以以他们想支付的价格访问副本。上面的案例研究展示了用于短期目的(例如促销活动)的付费模式的成功故事,但也有一些示例在各个行业中长期应用,并取得了不同的成果。我们将注意力转移到餐厅业务上,在该业务中,Payw模型已采用可变结果。我们研究了两个小型案例,并描述了此类业务计划的成功和失败背后的关键因素。Panera Bread是一家著名的面包店餐厅连锁店,在美国和加拿大拥有多个地点。PaneraCaresCafés于2010年成立为Panera Bread的非营利性部门。这些“社区咖啡馆”的主要目的是解决粮食安全问题,访客可以在菜单上吃饭并支付“建议的捐款”,而不是建议的捐款,或者根本不支付。换句话说,目的是为那些负担不起的人创造一个以尊严的用餐空间。那些负担不起薪水的人被鼓励在咖啡馆自愿工作以换餐。尽管任务解决了一个社会事业,但咖啡馆面临的几个挑战使得长期以来很难维持。所面临的主要挑战之一是该计划的目的与访问咖啡馆的客户的看法之间的不匹配。,Panera Bread的品牌形象作为优质的营利性咖啡馆与Panera Cares的社交任务相冲突,这进一步促进了这一事实,因为非营利性咖啡馆看起来相同,并尝试提供与Panera Bread相同的餐点。例如,对Yelp的评论强调,普通客户通常会发现很难与无家可归的人一起用餐。假设付费客户会补贴无薪客户,则该计划在财务上是自给自足的。但是,现实是完全不同的。例如,在Panera销售店之一中,只有10%的客户支付的费用超过了“建议捐款”。因此,这些媒体无法在经济上维持自己,因此无法关闭商店。社会实验始于2010年,最终在2019年关闭了五个媒体。
嵌合抗原受体 (CAR) -T 细胞疗法已进入突破性时代,其特点是治疗机遇与挑战并存。随着基因组编辑技术的整合,CAR-T 细胞将成为消灭肿瘤细胞和攻击各种肿瘤(包括 T 细胞恶性肿瘤和急性髓性白血病)的超级战士。值得注意的是,CAR-T 细胞的优化(包括功效、安全性和制造速度)加上放射治疗、造血干细胞移植、小分子抑制剂和双特异性抗体等其他治疗策略,可能会彻底改变肿瘤的治疗格局。因此,下一代细胞免疫疗法(包括通用 CAR-NK 细胞和协同组合方法)预计将在未来十年对癌症治疗产生重大影响。尽管如此,CAR-T 疗法的失败率仍然很高。挑战在于确定最佳组合策略并识别可靠且强大的生物标记,以有效选择将从 CAR-T 疗法中获得最大益处的患者。在此,我们重点介绍了 2023 年 ASH 年会上提出的 CAR-T 产品、组合策略和反应预测生物标记的最新创新。
数据驱动的商业格局很难想象一个没有数据的世界。如今有这样的想法听起来甚至有点不现实。我们日常生活中所做的几乎每件事都会产生大量信息。以前,公司从未能够访问如今存储的海量数据,从客户和财务数据到运营和生态系统数据。公司在试图报告长期价值时面临的挑战之一是可用的海量数据以及如何从中提取意义。要理解这一挑战的规模,请考虑一下全球数字世界中的数据量每两年翻一番。在这种背景下,人工智能 (AI) 可能成为游戏规则的改变者,它能够理解这些数据并识别有意义的指标。
植物转化仍然是功能基因组学和作物遗传改良最受追捧的技术,尤其是用于引入特定的新特性以及修改或重组已有特性。自 25 年前首次推出以来,转基因作物与许多其他农业技术一样,全球产量稳步增长。自首次使用农杆菌将 DNA 转移到植物细胞以来,不同的转化方法推动了分子育种方法的快速发展,将具有新特性的作物品种推向市场,而这些特性是传统育种方法难以实现或不可能实现的。如今,转化生产转基因作物是农业领域最快和最广泛采用的技术。植物基因组测序数量迅速增加,功能基因组学数据中的信息有助于了解基因功能,再加上新型基因克隆和组织培养方法,进一步加速了作物改良和特性发展。这些进步是值得欢迎的,也是使作物更能适应气候变化并确保产量以养活不断增长的人口所必需的。尽管取得了成功,但转化仍然是一个瓶颈,因为许多植物物种和作物基因型难以适应既定的组织培养和再生条件,或者转化能力较差。使用形态发生转录调控因子可以进行改进,但它们的广泛适用性仍有待检验。基因组编辑技术的进步和直接、非组织培养的转化方法为增强其他难转化作物品种的开发提供了替代方法。在这里,我们回顾了植物转化和再生的最新进展,并讨论了农业中新育种技术的机会。