为了实现英国2050年净零目标,具有法律约束力的五年“碳预算”至少是由气候变化委员会(CCC)提前12年设定的,该委员会是针对2050年目标的步骤。每个碳预算都为英国在所有领域的净零排放量以及每个部门的途径设定了途径。迄今为止,已经设定了六个碳预算,旨在将所有部门的排放量限制在2037年的1990年水平的78%。CCC还进行了分析来投影平衡的净零途径,该途径建议用于电力领域的一代产品组合,该产品组合有助于遵守碳预算,并支持其他部门过渡到净零。最新的碳预算要求CCS与CCS产生30个TWH,或2035年英国电力的6%。1类似地,能源安全部和净零(DESNZ)2的分析认识到到2035年最多10 gw发电能力。
人工智能作为当代先进技术,近年来在生活的各个领域都得到了认可。家庭经济活动的增加引发了对女佣的需求,因为越来越多的人希望通过家庭服务来维持他们的社会家庭结构需求。家庭专家表示,人们对女佣的需求取决于他们的时间价值。一个每小时时间价值 10 美元的雇佣者可以以每小时 5 美元的价格雇佣一名家政人员。在这个关头,雇佣保姆已经成为许多家庭的必需品,因为日程繁忙、双收入生活方式、身体限制、专业技能需求、照顾年老或残疾的家庭成员、频繁旅行或通过外包家务来提高整体生活质量。然而,颠覆性的人工智能保姆可以提供持续的监控、个性化教育、家务日常和儿童保育援助。它还可以提供远程父母监控和应急响应;如何
o 例如,营养指南可改善营养指标、包容性数据收集以及突破性的科学和医学发现 • 与白宫饥饿、营养和健康会议的第五大支柱保持一致,以加强美国各类人群/亚人群的营养和粮食安全研究 • 为营养和粮食安全政策提供有关公平、获取和差异等问题的信息 • 从研发投资中获得回报,从而激发未来的创新能力和竞争力 • 需要来自不同种族、民族和性别少数群体的科学家进行研究机会
人工智能 (AI) 技术在医学成像中的应用最近引起了极大的轰动,由于当前深度学习技术与过去的机器学习方法相比的技术实力、数字医学图像的广泛可用性以及计算硬件功能的增强,AI 正在进入临床实践 [1 - 4]。正如本期特刊的重点评论文章 [5 - 8] 中详细讨论的那样,AI 已被尝试用于各种器官和系统的超声检查,例如甲状腺、肌肉骨骼系统、乳房和腹部,尽管其应用范围不如胸部 X 光片 [9] 等其他一些放射成像方式那么广泛。人工智能有望发挥以下潜在作用:提高超声图像的质量,提供各种形式的诊断支持(例如,自动表征超声图像上的发现;从超声图像中提取定量或预测信息,这对于人类检查者而言难以仅凭视觉观察完成;以及自动检测或分割超声图像上的各种结构),并提高工作流程效率 [10]。未来,人工智能在超声检查中的具体应用预计还会不断增加。人工智能算法可以提高超声检查者的诊断准确性和能力,有望对经验不足的检查者特别有帮助 [11 - 15]。超声检查在临床实践中的应用比计算机断层扫描 (CT) 或磁共振成像 (MRI) 更为广泛,并且由更多具有不同专业水平的医疗专业人员进行,其中一些人的表现优于其他人。通常,一名检查者会在检查过程中即时解释发现并做出决定。因此,与 CT 或 MRI 相比,超声检查对操作员的依赖性和主观性更强,这是众所周知的问题。因此,在超声检查中应用人工智能最令人期待的好处之一是减少检查者之间的差异。在这方面,人工智能可能提供一个独特的机会,通过消除检查者之间的差异来提高超声检查的性能。不过,应该注意的是,超声检查的本质也对超声检查人工智能的开发和临床实施提出了挑战。首先,超声检查对操作员的依赖性和主观性引入了额外的差异
© 编辑(如适用)和作者 2022。本书是开放获取出版物。开放获取 本书根据知识共享署名 4.0 国际许可证(http://creativecommons.org/licenses/by/4.0/)的条款获得许可,该许可证允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信用,提供知识共享许可证的链接并指明是否进行了更改。本书中的图像或其他第三方材料包含在本书的知识共享许可证中,除非在材料的致谢中另有说明。如果材料未包含在本书的知识共享许可证中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等。即使没有具体声明,也不意味着这些名称不受相关保护法律和法规的约束,因此可以自由使用。出版商、作者和编辑可以放心地认为,本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对此处包含的材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图和机构隶属关系中的司法管辖权主张保持中立。
缩写:AADC,芳香族 L-氨基酸脱羧酶;AAV,腺相关病毒;ALS,肌萎缩侧索硬化症;APOE,载脂蛋白 E;ASO,反义寡核苷酸;ATXN2,共济失调蛋白 2;BBB,血脑屏障;BSCB,血脊髓屏障;CDKL5,细胞周期蛋白依赖性激酶样 5;CNS,中枢神经系统;CRISPR,成簇的规律间隔的短回文重复序列;CSF,脑脊液;DRPLA,齿状红核苍白球路易体萎缩;FTD,额颞痴呆;FUS,聚焦超声;FXTAS,脆性 X 相关震颤/共济失调综合征;GABA,γ-氨基丁酸;GAD,谷氨酸脱羧酶;GAG,糖胺聚糖; GAN,巨轴突性神经病;GBA,葡萄糖脑苷脂酶;GCH,三磷酸鸟苷环化水解酶;GDNF,胶质细胞源性神经营养因子;ICis,脑池内;ICV,脑室内;IPa,脑实质内;IT,鞘内(腰椎);IV,静脉内;LacNAc,硫酸化N-乙酰乳糖胺;MAO,单胺氧化酶;miRNA,微小RNA;MLD,异染性脑白质营养不良;MPS,粘多糖贮积症;MRgFUS,磁共振成像引导聚焦超声;MRI,磁共振成像;MSA,多系统萎缩;NCL,神经元蜡样脂褐素沉积症;NGF,神经生长因子;NTN,神经营养素;PDHD,丙酮酸脱氢酶缺乏症;Put,壳核; rAAV,重组腺相关病毒;RNAi,RNA 干扰;siRNA,短干扰 RNA,小干扰 RNA;SMA,脊髓性肌萎缩;SMARD,脊髓性肌萎缩伴呼吸窘迫;SNc,黑质致密部;SOD1,超氧化物歧化酶 1;Str,纹状体;TDP-43,TAR DNA 结合蛋白 43;TERT,端粒酶逆转录酶;TH,酪氨酸羟化酶;Th,丘脑;VTA,腹侧被盖区;ZFN,锌指核酸酶。 * 通讯作者:德克萨斯大学达拉斯分校,800 West Campbell Road, EW31, Richardson, TX 75080, USA。电子邮箱地址:Zhenpeng.Qin@utdallas.edu (Z. Qin)。