这项工作考虑了NA热管的各种功率转换入口温度(PCIT)为1100 K,1150 K和1200 K,而每种PCIT的LI热管,1100 K,1150 K,1150 K,1200 K和1400 K,并确定和分析了组合热交换器和反应器子系统的质量和压力损失。na显示出比相同几何形状的LI的总工作温度低,最大热量能力的五分之一。因此,整个基于NA的子系统最终的质量是基于LI的子系统的三倍,给出了所需的热管数五倍。在1100 K的低PCIT下,基于NA的子系统表现出最低的压力损失,因为较大的总横截面流域和相对较低的摩擦压力损失。但是,随着PCIT的增加,摩擦压力损失增加,导致1200 K PCIT的压力损失比基于LI的子系统更高。基于LI的子系统由于在此温度下的Brayton工作流体密度低,因此在1400 K PCIT处所有分析病例的压力损失最大。
引言肾结石症在其一生中至少有9%的人居住在美国,其患病率正在增加(1)。超过80%的肾结石含有钙,草酸钙是所有肾结石至少三分之二的主要成分(2)。肾结石病在5年内的高复发率约为50%(3)。当前减少草酸钙结石复发的方法包括一般措施,例如液体摄入量增加,饮食盐和草酸盐限制。此外,根据尿代谢异常,例如高钙尿和/或低脂肪尿素,使用噻嗪类利尿剂和柠檬酸钾。没有批准的药物用于治疗高氧甲里尿,这是草酸钙肾石石症的主要且常见的危险因素,最近公认的慢性肾脏病(CKD)进展的危险因素(4)。
第 Di 章-文献综述 ................................................................................ 6 ffl.1. 传统规模交叉排式热交换器 ...................................................... 8 IH.2. 紧凑型热交换器 .............................................................................. 9 ffl.3. 电子冷却 ...................................................................................... 10 m.4. 具有相同通道尺寸的交叉排式微型热交换器 ............................................................................................. 11 m.5. 热交换器比较 ............................................................................. 13 m.6. 其他微型热交换器 ............................................................................. 14
摘要 - 目前需要向100%可再生视野进行能量过渡,将能量存储作为钥匙。热能存储有可能成为最佳技术。如今,电阻器用于通过加热后来存储的空气通量来将电能转换为热能。在这项工作中,建议使用多阶段热电热泵(MS-TEHP)进行这种能量转换。已通过实验分析并比较了两个MS-TEHP与不同的内部热交换器的表现。通过这项初步研究,已经证明了这种新型热电技术的可行性,旨在改善热能储能的能量转换过程。关键字 - 热电泵,多阶段,热交换器,热电学
银行确实在大力投资:摩根大通每年在技术方面投入 120 亿美元,包括人工智能和机器学习,使其成为行业领导者。它是首批推出人工智能“虚拟助理”的银行之一,旨在让企业客户更轻松地在全球范围内转移资金,无论是日常工资单操作的一部分还是数百万美元的并购融资。目前,该公司运营着一个人工智能研究项目,以“探索和推进人工智能和机器学习以及密码学等相关领域的前沿研究”,为银行自身使用开发解决方案并开发客户服务。
电网运营商面临的一个主要挑战是频率调节。需要进行调节以协调互连频率、管理区域之间的电力流动以及使某个区域的负载与发电量相匹配。严重的频率偏差可能导致停电。频率调节功能 (FRF) 允许在电网频率降低或增加时从 UPS 电池组放电或向其充电。频率调节用于应对计划外发电和负载不平衡,否则会导致频率稳定性问题。使用 PowerExchanger,如果存在电网频率调节问题,电力不仅可以流向支持关键负载,还可以支持电网并帮助解决问题。
© 版权所有 2021 Hewlett Packard Enterprise Development LP。本文所含信息如有变更,恕不另行通知。Hewlett Packard Enterprise 产品和服务的唯一保证在随附此类产品和服务的明确保证声明中规定。本文中的任何内容均不应被视为构成额外保证。Hewlett Packard Enterprise 对本文所含技术或编辑错误或遗漏概不负责。NVIDIA 是 NVIDIA Corporation 在美国和其他国家/地区的商标和/或注册商标。所有第三方商标均为其各自所有者的财产。a50005141ENW,2021 年 11 月
1-D PCM 棒的横截面积,[m 2 ] 比热,[J kgK ⁄ ] 运行成本,[$ yr ⁄ ] 电价,[$ kWhr ⁄ ] 管材成本,[$ kg ⁄ ] PCM 材料成本,[$ kg ⁄ ] 管内传热系数,[W m 2 K ⁄ ] 总时间步数 电导率,[W mK ⁄ ] 管总长度,[m ] 平准化能源成本,[$ MWh ⁄ ] PCM 潜能,[kJ kg ⁄ ] 径向网格数 管长网格数 努塞尔特数 普朗特数 传热速率,[W] 传热速率,[W] HTF 总质量流速,[kg s ⁄ ] 环内半径,[m] 环状几何中的移动凝固前沿,[m]环形圆柱体 PCM 的热阻,[ m ] 圆柱体 PCM 内的热阻,[ KW ⁄ ] 导热流体内的热阻,[ KW ⁄ ] 雷诺数 温度,[ ℃ ] 边界冷却温度,[ ℃ ] 相变材料熔化温度,[ ℃ ] 管与圆柱体 PCM 之间的界面温度,[ ℃ ] 管内导热流体的速度,[ ms ⁄ ] 管壁厚度,[ mm ] 壳体厚度,[ mm ] 一维 PCM 棒的长度,[ m ] 每天运行小时数,[ hr ] 凝固时间,[ hr ] 移动凝固前沿,[ m ] 设备总寿命,[ yr ] 环形圆柱体 PCM 的轴长,[ m ] 两个坐标系之间的凝固前沿比率 密度,[ kg m 3 ⁄ ] 粘度,[ Pa ∙s ] 潜能储存系统的有效性矩形几何结构显热能分数因子 圆柱形几何结构显热能分数因子 差值或增量步长 泵效率
在给定压缩功的情况下提高总压力比的一种方法是引入带中间冷却的多级压缩,其中气体分阶段压缩并在每级之间通过使气体通过称为中间冷却器的热交换器进行冷却。航空航天工业中的燃气涡轮发动机需要高总压力比。为了实现更高的压力比,压缩机分为低压压缩机(LPC)和高压压缩机(HPC)。这样做是为了在LPC和HPC之间引入中间冷却器。压缩气体在LPC的出口处具有相对较高的温度。通过使用横流或逆流空对空热交换器,压缩空气在一侧流动,低温冲压空气在另一侧流动,压缩空气可以在进入HPC之前得到冷却。稳流压缩功或给定压缩功的压力比与压缩空气的比容成正比[8]。中间冷却器降低温度,从而降低压缩空气的比容,从而提高热力循环效率。在燃气涡轮发动机中,离开涡轮的废气温度通常比离开 HPC 的空气温度高得多。可以结合再生器或回热器,即横流或逆流热交换器,将热废气中的热量传递给压缩空气。因此,热效率提高,因为废气中应该被排放到周围环境中的部分能量被回收以预热进入燃烧室的空气。当使用中间冷却器时,回热器更有优势,因为存在更大的回热潜力。对于高总压力比,回热器并不有效,尤其是考虑到其成本、尺寸和重量。图 1 显示了概念草图,将不同燃气涡轮循环的热效率与总压力比进行比较。一般而言,中间冷却和回热燃气涡轮循环在相对较低的总压力比(例如小于 30)下有效。没有回热的中间冷却燃气涡轮循环仅在非常高的总压力比下有效。图 2 说明了中冷和回热燃气轮机循环。
