拓扑优化(to)通常使用且经过充分探索。然而,它在航空航天应用中使用的复杂热流体设备设计中的利用是有限的且相对较新的。这是因为流体动力学,传热和形状之间的耦合是复杂且非线性的。此外,由于可能发生的自由形式,从一个到分析产生的几何形状通常非常复杂,而且很难制造。随着添加剂制造(AM)的出现,可以直接制造复杂的几何形状。这项研究开发了一种基于计算流体动力学(CFD)的新遗传算法(GA),以生成用于航空航天应用中使用的热交换器的优化细胞形状。为了实现这种方法,使用体素表示创建了矩形基线细节。通过突变基线限制的次数来产生一个无性群体。然后使用CFD软件包OpenFOAM评估每个设计的性能,然后应用优化算法。GA使用由整体传热和压降组成的复合材料函数对设计进行分类,并基于突变和最高表现设计的结转而生成新一代。该研究还探讨了GA对各种GA选项的敏感性以及不同流动雷诺数的影响。通常,随着雷诺数的增加,最佳相对于基线的最佳提高百分比增加,可能会提高89%。总体而言,该方法可以生成新颖的自由形式设计,这些设计可能为传热应用打开新的性能空间。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
摘要。为了改善高级绝热压缩空气存储(AA-CAES)系统的热量存储和热交换系统,研究了带有再生热交换器(RHES)的AA-CAES系统。RHE用于替换传统的复合单元,包括热交换器,高温罐和低温储罐模式。对于带有Rhes的AA-CAE,简化了能源存储系统以减少热量交换和存储过程中的热量损失,因此,输出工作,储能密度,系统的能量存储效率得到提高。建立了热力学模型,并研究了压缩比分布,扩展比分布和环境温度对系统性能的影响。结果表明,对于具有Rhes的AA-CAE,当压缩比的比率为1.14时,压缩机的输入工作为最小值,储能效率为66.42%,储能密度为3.61 kWh/m 3。当扩展比率为0.82时,储能效率达到67.38%,并且能量存储密度达到3.66 kWh/m 3的最大值。
NETL 资助号 DE-FE002776 开发的技术已用于预测由于在役氧化导致 𝛾′ 结构演变而导致的蠕变。• 目前正在测试 • Haynes 224 的蠕变数据
摘要 规划大型地源热泵 (GSHP) 系统的运行需要精确的地下管换热器 (BHE) 模型,这些模型不需要大量计算。在本文中,我们提出使用测量数据进行参数估计作为改进 BHE 分析模型的一种方法。该方法已应用于运行超过 3 年的 GSHP 系统。BHE 的建模负载和测量负载之间的偏差从 22% 降低到 14%。通过改变校准数据的时间分辨率和季节来测试校准数据集的影响。我们得出结论,时间分辨率必须足够高才能区分不同参数的影响,并且必须对注入和提取(季节)使用不同的模型参数。该方法还应用于已监测 10 年的 GSHP,结果表明,通过每年更新参数可以提高模型的准确性。
摘要:热交换器是一种用于在两种或多种不同温度、热接触的流体之间传递热能的装置。热交换器广泛应用于不同类型的工业和家庭应用。两种起始温度不同的流体流过热交换器。一种流体流过管(管侧),另一种流体流过管外但在壳体内(壳侧)。挡板放置在壳侧空间,提供壳侧流体的横向流动方向,因此可以实现流体之间更密集的热交换。此外,管束带有挡板,这有助于减少设备的偏转和振动。在目前的研究中,对包含不同方向的扇形挡板的单程、横向流壳管式热交换器进行了实验,以计算一些参数,例如传热速率和压降。壳管式热交换器的设计包括机械设计和热设计。机械设计包括主壳体在内外压降下的设计、管道设计、挡板设计等。热设计包括评估所需的有效表面积、管道数量以及找出对数平均温差。使用有效性 NTU 方法开发了热模型。关键词:管道设计、挡板、压降、对数平均温差、NTU 方法、改变直径、实验、热效率。
A c 横截面积,[ m 2 ] A s , A h 总传热面积,[ m 2 ] β 表面密度,[ m 2 /m 3 ] 或整体压力梯度,[ Pa/m ] C p 恒压比热,[ J/ ( kgK )] Co 库仑数 d h 水力直径,[ m ] δ 翅片厚度,[ m ] ϵ 热交换器效率或湍流耗散,[ s ] 或翅片间距比 f c 核心摩擦系数 f 扇形 扇形摩擦系数 f 频率,[ Hz ] 或 Forschheimer 摩擦系数 G 质量流速,˙ m/A c , [ kg/ ( m 2 s )] γ 波纹间距比 h 对流膜系数 [ W/ ( m 2 K )] h f 压力损失,[ m ] η 0 , η f二次传热表面的有效性 j 科尔本系数 K c 入口损失系数 K e 出口损失系数 k 湍流动能,[ J/kg ] 或材料的热导率,[ W/ ( mK )] L , l 长度或翅片长度,[ m ] LMTD 对数平均温差,[ K ] M 马赫数 ˙ m 质量流量,[ kg/s ] µ 动态粘度,[ Pa · s ] N st 斯坦顿数 Nu 努塞尔特数 ν 运动粘度,[ m 2 /s ] P 周长,[ m ] 或流体压力,[ Pa ] Pr 普朗特数 Re 雷诺数 ρ 密度,[ kg/m 3 ] Q 或 ˙ Q 传递的热量,[ W ] Q 平衡 热交换器流之间的热平衡 Q 热 热交换器热侧发出的热量,[ W ] Q 冷热交换器的冷侧,[ W ] φ 流动面积与面面积之比或标准偏差 T 温度,[ K ] U 总传热系数 [ W/ ( m 2 K
2013年,国防部处理了780多起重大计算机事件,而2012年则为420起。这一大幅增长反映出网络空间恶意行为的加强。但这些数字也得益于该部更好的监控和更高水平的警惕,从而发现了更多的威胁。这些事件大多规模较小;从这个方面来看,它们本质上是网络犯罪和网络抗议的问题。特别是通过与 ANSSI 的合作,我们还发现了针对我们正在行动的部队以及该部敏感领域专家的入侵或攻击企图。我们的一些外部服务提供商或国防制造商也成为了攻击目标。这是我们现在已经充分理解的现实。 2013 年《国防与国家安全白皮书》毫无疑问地将网络防御列为国家优先事项。自2008年以来,网络攻击现象已变得全球化和加速,网络攻击对我们这个从未如此依赖数字技术的社会具有特别强大的破坏力。大规模或破坏性攻击的威胁已成为国防部、武装部队、情报部门以及整个国家网络防御界关注的主要问题。一些国家已成为重大袭击的受害者;大规模间谍活动渗透到我们的基础设施和大公司的核心现在已成为现实;即使是相对简单的攻击也可能严重破坏准备不足和防御薄弱的组织的运作。此外,需要强调的是,当今任何军事行动以及更普遍意义上的任何对抗都包含或多或少发达的网络元素。网络行动现在是
最大耐腐蚀性。最大热效率。最大热交换器寿命。CG Thermal 的 Umax® 高级陶瓷热交换器是镍合金、活性金属、石墨和石墨热交换器的高价值长寿命替代品,具有无与伦比的耐腐蚀性、热效率、低结垢和可维护性组合。卓越的耐腐蚀性 Umax® 陶瓷热交换器是您最具腐蚀性的传热应用的终极解决方案。它对高达 400 F 的几乎所有化学物质都具有普遍的耐腐蚀性。它们特别适合涉及混合酸、HF、HCL、高浓度 H2SO4、溴、氟或苛性碱的工艺。Umax 陶瓷非常坚硬,不受热冲击影响,具有出色的强度特性、防腐蚀且无污染。耐热冲击和抗机械冲击。Umax® 的抗压强度和抗弯强度分别是石墨的 50 倍和 10 倍。其抗弯强度甚至高于钽。其热性能同样出色,热导率是钽的 2 倍,且热膨胀率较低。
