1阿拉斯加阿拉斯加大学费尔班克斯大学,费尔班克斯阿拉斯加2 USGS,安克雷奇阿拉斯加3美国森林服务,安克雷奇阿拉斯加阿拉斯加4美国森林服务局,阿拉斯加费尔班克斯阿拉斯加阿拉斯加森林服务团队的其他成员:布鲁斯·克雷文斯滕(Bruce Crevensten)
面对气候变化的甘蔗(囊式冠状动脉)的种植需要强大的策略来管理害虫,疾病和杂草。这项系统的审查在当前实践中暴露了关键的定义,并强调了对气候自适应策略的需求。气候变化差异化影响了各个地区的害虫行为,疾病的进展和杂草的生长,但缺乏特定区域的反应会损害有效的管理。审查强调了考虑特定气候条件的局部方法的必要性以及预测有害生物和疾病暴发的预测模型的发展。这些模型包括决策支持系统(DSS),支持向量机(SVM),易感性暴露感染性(SEIR)模型,地理信息系统(GIS),物种分布模型(SDMS),农业生产系统模拟器(APSIM)和Integrated Pest Management(IPM)。至关重要的策略包括综合害虫和疾病管理,适应性育种,精确农业和持续的创新。精确的农业技术,例如遥感和无人机,可以提早检测和及时干预措施。通过采取这些适应性措施并解决现有的研究差距,甘蔗行业可以在不断发展的气候条件下增强其韧性并保持生产率。
与许多其他环境一样,海洋和沿海环境容易受到气候变化的影响(IPCC,2023年)。海洋占据了世界表面的70%,具有巨大的生物量生产潜力,但是气候压力源会影响生态系统功能以及水生生物的健康和生长。了解气候变化将如何影响海洋粮食生产,因此可能的适应策略至关重要。虽然木磨坊的产量稳定或下降,但据信水产养殖在粮食安全中起着越来越重要的作用,有助于供应高质量的粮食,以满足不断增长的地方和地区社区以及全球人口的需求(Aksnes等人,2017年,2017年; FAO,2024年)。因此,我们必须考虑不断变化的海洋环境如何支持可持续的粮食生产。海洋热含量的观察记录表明,海洋变暖正在加速(Cheng等,2019)。海洋热浪(MHW)是异常的温暖海水事件,可能会对海洋生态系统产生重大影响(Oliver等,2021)。全球海平面上升和沿海流量的预测显示,随着极端事件变得更加激烈,许多物种的脆弱性水平增加了(Voustdoukas等,2018)。但是,关于气候变化对粮食生产的影响有许多知识差距,从根本上讲,由于影响暴露,风险水平和适应潜力的因素有许多不同的因素(Falconer等,2022)。研究主题,例如“不断变化的海洋中的粮食生产潜力”,以增加该主题的重点和相关性。结果该研究主题包含七个原始研究文章和一个观点。两篇研究文章考虑捕获猎犬,而其他研究则关注水产养殖。研究包括一系列实验,分析和建模方法,以解决与整体研究主题保持一致的问题。对粮食产量增加的需求正在给全球野生种群带来额外的压力,而捕虫的开发过多是一个主要风险。挑战之一是影响人口水平的多种因素,Yulianto等人研究了这一研究主题。Yulianto等人专注于印度尼西亚的蓝色游泳蟹(Portunus pelagicus)。结合了一系列方法来评估填充性的可持续性,并通过多个方面的方法来改善实践,从而整合技术,政策,监管和监测。在对Bigeye Tuna(Thunnus obesus)的薄片的分析中,Ding等人。使用鱼类库存的预测模型来分析气候变化对捕获的影响。
基于区域的管理工具(ABMT),包括海洋保护区(MPA)通常是静态的,无法反映海洋生态系统的动态现实。海洋生态系统的特征是它们的体现不断变化,这进一步由人为应激源(尤其是气候变化)扩大。ABMT和MPA的前提是以环境平衡的隐式假设,因为它们的边界和管理框架通常被固定,并且很难进行调整。本文试图在静态保护策略与海洋生态系统的深刻和天生的动态性质之间揭开张力。它进一步旨在推进动态ABMT的概念,提出了对ABMT治理的综合概念化,这种概念更容易应对复杂海洋生态系统提出的复杂海洋生态系统动态的挑战类型。的动态被广泛地解释为包含三个维度:空间,具有流动和可调的保护措施;规范性,表示一种动荡和自适应的管理框架,该框架利用生态和管理阈值作为适应性,及时和前瞻性方法来增强管理结果的发起人;和制度,即,充分灵活而动态的机构机制负责监督ABMT实施。在对动态ABMT的全面概念化之后,本文解决了以下问题,管理着海洋的法律框架是否可以维持这种动态的海洋治理模式。
随着基于大型语言模型 (LLM) 的应用程序的出现,AI 再次成为一个备受关注的话题。这些新模型的局限性尚待探索,目前还不清楚当前的 AI 趋势将有多大的颠覆性。毫无疑问,人们担心 AI 对网络安全的影响,因为它已经改变了攻击者和防御者的网络线程格局。我们调查了由于新技术的出现,攻击者的攻击和操作如何发生变化,重点关注 AI 的攻击性使用。虽然生成式 AI 已经提高了社会工程攻击的质量和数量(例如,深度伪造、大规模个性化网络钓鱼),但我们将讨论重点放在技术攻击媒介上,而不是人为因素上。然而,应该提到的是,社会工程攻击是最普遍的攻击之一,AI 对这种特定类型攻击的影响非常明显。
虽然 BGT 仍处于开发阶段,但它正在开展多项合作(包括与 Envu(前拜耳环境科学公司)和 Clarke Mosquito Control 的项目),这些合作已发展成为商业协议,并进一步证明了该公司产品的优越性。早在 2024 年 9 月,该公司就与大型农业科学公司和塔塔化工的子公司 Rallis India 合作实现了 Flavocide™ 的中试规模生产,表明 Flavocide™ 可以在预商业规模下以一致的质量和产量生产。BGT 计划在 CY25 年底向澳大利亚监管机构 (APVMA) 提交其对 Flavocide™ 活性成分的首次监管批准申请,目标是在 CY27 年中期获得监管批准。重申先前的估值范围
在2030年之前提供21 ev的愿景。ioniq 9的特征是其优雅,干净,时尚的设计,具有优质,高质量和精美的机舱,可提供宽敞,通风的感觉。ioniq 9 ev功能可提供强大的范围和类领先的充电能力。ioniq 9确实是“建造的”,可容纳宽敞的内饰中多达七名乘员,同时提供满足每个人个人需求的创新功能。ioniq 9不仅仅是运输,这是一个空间,家人和朋友可以与最新技术保持联系,同时享受使每一段旅程都特别的隐私和放松。是通过其智能连接功能来管理繁忙的时间表还是在其室内室内放松身心,IONIQ 9适用于用户的动态生活方式。通过内部空间的创新利用来最大化舒适性和便利性
简介:热带土地区域正在扩大气候变化,热带美洲预测温度的某些情况最高为〜4°C,降低了近20%,到2100年。这将使当前物种的组装暴露于以前从未经历过的气候,有可能选择适合这种气候的未来植物社区,但与当前观察到的植物不同。对气候变化的回应可能取决于潜在的机制和地理环境。面对气候变化的威胁,了解这些复杂系统适应变化和生存的能力既关键又迫切。环境条件,植物性能和分布之间的关系是由物种功能性状介导的。因此,基于特征的方法提供了
图1:我们方法的示意图描述。要描述平衡f,我们需要以下步骤:(1)确定缩放参数ε并重新分发分布f满足的方程; (2)将分布F转换为U.转化的分布u是密度F的对数,在无性繁殖情况下按比率ε归一化,在无穷小的性繁殖案例中由ε2归一化; (3)将U的极限方程式确定为ε→0(橙色框),并推断出宏观特性(绿色框),例如平均适应度λ0,种群中的平均相对表型z ∗ 0,进化滞后| z ∗ 0 |或平衡VAR(F)处的表型方差。
预测人口适应不断变化的环境对于评估人类活动对生物多样性的影响至关重要。许多理论研究通过对围绕最佳表型稳定选择的定量性状的演变进行建模,从而解决了这个问题,该定量性状的进化是在最佳表型周围稳定选择的,该表型的价值随着时间的流逝而连续地转移。在这种情况下,人口命运是由于性状的平衡分布而引起的,相对于移动最佳效果。这样的分布可能随选择形状,繁殖系统,基因座数量,突变内核或其相互作用而变化。在这里,我们开发了一种方法,该方法可以直接从表型分布的整个概况直接从表型分布的整个概况中进行定量测量,而没有任何先验的形状。我们研究了两个不同的繁殖系统(无性和无穷小的性模型),具有各种形式的选择。