摘要 目的:对 Neuropixels 等多通道和高通道神经探针记录的神经尖峰数据进行分类,尤其是实时分类,仍然是一项重大的技术挑战。大多数神经尖峰分类算法侧重于事后对神经尖峰进行高分类精度——但这些算法通常无法减少处理延迟以实现快速分类,甚至可能是实时分类。 方法:我们在此报告我们的图形网络多通道排序 (GEMsort) 算法,该算法主要基于图形网络,可以对多个神经记录通道进行快速神经尖峰分类。这是通过两项创新实现的:在 GEMsort 中,通过仅选择任何通道中幅度最高的神经尖峰进行后续处理,从多个通道记录的重复神经尖峰被从重复通道中消除。此外,记录代表性神经尖峰的通道被用作附加特征,以区分从具有相似时间特征的不同神经元记录的神经尖峰。 主要结果:合成和实验记录的多通道神经记录用于评估 GEMsort 的分类性能。 GEMsort 的排序结果还与其他两种最先进的排序算法(Kilosort 和 Mountainsort)在排序时间和排序一致性方面进行了比较。意义:GEMsort 可以快速对神经脉冲进行排序,非常适合用数字电路实现,以实现高处理速度和通道可扩展性。
本文档中提供的信息被认为是准确和可靠的。但是,江苏杰杰微电子有限公司对未考虑此类信息或超出此类信息范围使用所造成的后果不承担任何责任。本文档中提到的信息如有更改,恕不另行通知,除非签署协议,否则江苏杰杰将遵守协议。本文档中提供的产品和信息不侵犯专利。江苏杰杰对因使用此类产品和信息而可能侵犯第三方其他权利的行为不承担任何责任。
频道,导致兴奋性和超极化降低。当代分类基于其亚基组成,跨膜域的数量和功能特性,识别K +通道的三到五个亚型的任何地方。四个最广泛认识的亚型是:(a)电压门控k通道(k v),(b)钙(Ca ++)激活的K通道(k CA),(c)内部矫正K通道(K IR)和(d)两孔域K通道(k 2p)。除此之外,还有一些由特定分子激活的配体K通道,例如环状核苷酸(Kuang等,2015)。k +通道在几个大脑区域都高度表达,包括额叶皮层,基底神经节,海马和杏仁核,在那里它们影响神经元填充,发射器释放和神经可塑性。涉及大脑中K +通道相关突变的孟德尔疾病与发育延迟,癫痫和症状有关,表明焦虑,多动症和自闭症谱系障碍(Alam等,2023)。这使研究人员研究了K +通道功能对非芒德尔精神病综合症的可能贡献。此类研究发现了精神分裂症,抑郁症和自闭症谱系障碍中K +通道活性改变的可能证据。这增加了旨在调节这些通道功能的新型治疗方法的可能性(Vukadinovic和Rosenzweig,2012; Cheng等,2021; Meshkat等,2024)。最近的研究强调了K +通道在与焦虑和恐惧相关的过程中的重要性。在动物模型中,已经发现K V通道在恐惧条件和类似焦虑的行为中起着关键作用(Stubbendor Q.等,2023; Page and Coutellier,2024)。在人类中,编码K V和K IR通道亚基的基因中的多态性与青年人的焦虑症脆弱性有关(Thapaliya等,2023)。本文研究了最近的翻译证据,暗示了创伤后应激障碍发病机理中K +通道功能的变化。
工资和工资增加趋势2024年4月REMCHANNEL薪水和工资出版物揭示了一个有趣的趋势(请参阅第14页的亮点的信息图)。它表明,自2020年以来,截至2024年4月(6.09%)的平均工资增加略高于平均消费者价格指数(CPI),但他们并没有跟上生活成本的加快。我们2023年12月的员工福利调查报告指出,负责任的雇主认识到员工面临的财务压力,并通过创造急需的薪酬和福利包装灵活性来创新其福利。与此相一致,我们很荣幸能够提供一套全部奖励解决方案,使这些雇主能够制定和实施员工价值主张,这平衡了其雇员的短期和长期财务状况需求。使用后页上提供的详细信息与我们联系 - 有关我们如何在这方面为您和您的组织提供帮助的更多信息。
谷氨酸传统上被视为第一个激活NMDAR(N-甲基-D-天冬氨酸受体)依赖性细胞死亡途径1,2中的细胞死亡途径,但使用NMDAR拮抗剂进行了不成功的临床试验,暗示了其他机制3-7的参与。在这里,我们表明谷氨酸及其结构类似物,包括NMDAR拮抗剂L-AP5(也称为APV),通过与酸中毒诱导的中风中神经毒性相关的酸性离子通道(ASICS)介导的稳健性电流4。谷氨酸增加了ASIC对质子的亲和力及其开放概率,从而在体外和体内模型中加剧了缺血性神经毒性。定向诱变,基于结构的建模和功能测定法显示ASIC1A外细胞外结构域中的真正的谷氨酸结合腔。计算药物筛选确定了一个小分子LK-2,该分子与该空腔结合并废除了ASIC电流的谷氨酸依赖性增强,但避免了NMDARS。lk-2减少了缺血性中风的小鼠模型中的梗塞体积并改善了感觉运动恢复,让人联想到在ASIC1A敲除或其他阳离子通道4-7的小鼠中看到的。我们得出的结论是,谷氨酸是ASIC的阳性变构调节剂,以加剧神经毒性,并优先针对NMDARS上的ASIC上的谷氨酸结合位点靶向,以开发NMDAR Antagonist的精神病性副作用,以开发中风治疗。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年7月11日。; https://doi.org/10.1101/2024.07.07.08.602502 doi:Biorxiv Preprint
引力猫态,引力场充当着一个环境,其中宏观物体(类似于薛定谔的猫)以不同引力态的叠加存在。这些状态不仅具有理论意义,而且也为实验探索带来了希望,为研究引力和量子力学的相互作用打开了独特的窗口 [6,7]。从历史上看,围绕与此相关的一个基本问题一直存在讨论:我们如何确认引力是否必须被视为一种量化现象,或“为什么我们需要量化一切,包括引力” [8]?此外,是否存在一种普遍适用的实验方法,可以确定引力是否在量子层面上起作用 [9,10]?根据量子信息论的某些观点,有人认为,能够在两个系统之间产生纠缠的相互作用必然具有量子特性。因此,量子引力的一个重要指标是观察到由引力相互作用引起的大质量态之间的纠缠[11,12]。与目前依赖于检测引力介导的纠缠的测试相反,Lami等人[13]最近提出了一种仅关注相干态的新方法。有趣的是,他们的方法不需要产生广泛离域的运动状态或检测纠缠,因为纠缠不会发生在该过程的任何阶段。因此,近年来,引力猫态的研究引起了相当大的关注[14-17],这受到理论框架和实验技术的进步的刺激。一些研究人员利用引力波探测、量子光学和精密测量技术等工具,提出了各种生成和观察引力猫态的方案。这些努力不仅深化了
通道病是没有结构性心脏病的患者心脏猝死的主要原因。缺少高危但隐藏的通道病的诊断可能会带来致命的临床后果。然而,由于这些疾病的动态临床表现和难以捉摸的心电图表现,通道病的诊断通常是具有挑战性的。通常需要一种综合方法,包括临床评估,重复心动图,药物挑衅测试,运动压力测试和遗传研究以建立诊断。Phar-示意性挑衅测试可能具有有限的灵敏度,并且可能与假阳性结果有关。由于其产量相对较低,成本效益和可用性有限,因此不建议使用基因检测。未知的意义变体可能会使遗传发现的解释复杂化。本评论文章的重点是运动胁迫测试在Brugada综合征,长QT综合征和儿茶酚胺能多态性心脏心动过速的诊断和风险地层中的作用。