简介 2 本指南的目标 2 关于铝业协会 2 铝的特性 3 建筑中的铝 4 铝产品对 LEED ® v4 的贡献 5 能源与大气 5 建筑围护结构 5 可再生能源系统 5 凉爽屋顶 6 室内环境质量 7 可操作的开窗系统 7 最大化视野 7 反射装置 8 暖通空调管道系统 8 低维护 8 消防安全 8 材料与资源 9 利用可再生能源制造的原材料 9 大量使用再生原材料 9 预制 9 耐用且低维护 10 环境产品声明 (EPD) 11 报废铝回收 12 创新 13 创新案例研究 13 负责任的行业 14 行业可持续发展战略和指标 14 提高生产效率并减少碳足迹 15 展望未来 15 致谢 16 联系我们 16
作为日常运营的一部分,该公司通过在整个价值链中提供的产品和服务将融资传递到系统中,从而促进了经济稳定,并特别关注较小的公司。在这一年中,在BME市场上筹集的融资已向经济注入了99.63亿欧元的资本流量,这是固定收入融资的3767.96亿欧元的增加,分为2846,61.5亿欧元的公共债务和92,1,1,1,1,181百万欧元的公司债务工具。它还发展并承认可持续性与交易的可持续性联系,例如ESG指数和债券。今年,在BME增长市场上推出了一个新的细分市场,专门针对Socimis,具有社会影响,降低了利率。对金融教育的支持也构成了六个DNA的一部分,并赞助了旨在改善公民经济文化的不同倡议。
在印度理工学院马德拉斯分校,我们新成立的职业发展中心 (CPC) 体现了我们致力于培育一个将创业、行业、学术和学生融为一体的协作生态系统的承诺。这个统一的平台增强了我们提供全面职业支持和发展机会的能力。我们的学生非常有韧性,能将不确定性转化为学术和研究卓越的动力。职业发展中心包括我们的安置和实习部门,致力于与行业合作伙伴密切合作。我们的双重目标是帮助学生获得安置和实习机会,同时将组织与推动其使命向前发展的专业人士联系起来。这种集中式方法使 CPC 能够为学生提供增强的培训、交流机会和创业机会,最终提高他们的就业能力和职业准备度。我们相信,本季的合作将为所有人带来高产出。祝愿印度理工学院马德拉斯分校的安置和实习季取得成功!
脱位密度。那些不同的方法不观察到相同类型的位错,即统计存储的位错(SSD)和/或几何必需的脱位(GND)。有些是直接测量技术,例如ECCI和TEM成像,而其他是非方向方法,即HR-EBSD和XRD测量。因此,提出了使用这四种技术在未变形和变形的双链钢上获得的测量值的定量比较。对于低变形,位错密度很小(成像方法相当性能,而XRD 1- 5×10 13 m - 2),测量值的不确定性水平高。HR-EBSD测量结果表明,结果与这些变形水平的其他方法非常吻合。对于较高的变形水平(上面的脱位密度),成像方法不再相关,因此1 - 3×10 14 m - 2
一致的出口压力露点:行业领先的干燥剂床 • 工业级活性氧化铝干燥剂珠提供更大的表面积和高抗压强度,从而延长床的使用寿命 • 大型干燥剂床确保 4.8 秒的接触时间..... 允许干燥器入口处的湿润饱和空气干燥至所需的露点。• 工业级干燥剂确保在预期的 3 至 5 年干燥剂床使用寿命内保持最佳性能。• 大流量扩散器确保通过床的均匀流量分布并消除沟流 • 塔的尺寸使得通过床的空气速度不会使干燥剂流化,从而防止床移动和干燥剂扬尘 • 上流干燥允许水和重污染物在进入塔时从气流中掉落,从而保护床免受污染。这样当塔减压时,可以轻松排出污染物 • 可清洁的不锈钢流量扩散器/支撑筛网以及独立的填充和排水口,方便更换干燥剂
独特的管道布局类似于静态混合器几何形状,允许在壳侧实现均匀的熔体流动,并在低剪切速率下以较小的压降为代价在粘性流中形成层流,这对于连续本体聚合特别有用。该过程增强了熔体之间的热传递,并与单位体积极高的表面积完美结合,从而实现了对热传递的精确控制,从而实现了高转化率和持续的高聚合物流量。此外,SMR 的出色径向混合可确保局部浓度和温度梯度的最佳均匀化,同时避免通道、添加剂和催化剂等分布不均或死区。由于没有旋转部件,SMR 设计降低了维护成本以及运营/能源成本。关于粘度,SMR 在广泛的粘度范围内表现出色,使其适用于各种聚合物生产甚至多产品工厂,例如 PLA 和 PCL。在产品切换的情况下,由于其高表面,可以快速完成任何聚合物等级的更改,从而减少不合格产品的数量。
该原则涉及使用临时和永久的最佳管理实践。应审慎规划和实施这些实践,以防止沉积物进入环境和客户敏感区域。实践包括利用: - 平坦的边坡,将其磨圆并与自然地形融合,并为施工设备提供足够的通行权或临时地役权以进行工作; - 排水渠的设计充分考虑了宽度、深度、坡度、边坡、对齐、能量耗散和防护处理; - 防护性地面覆盖物,如植被、覆盖物、侵蚀垫或护堤,有助于防止发生侵蚀; - 堤坝和拦截堤坝等分流措施,有助于将片流转移出受干扰区域; - 斜坡排水沟或水槽,用于将径流引导到适当的位置; - 沉积物控制装置,如陷阱、水池、石头或岩石沟渠检查站、侵蚀包或淤泥栅栏(不得用于渠道),有助于过滤掉沉积物; - 地下水拦截设施的位置和间距; - 特殊的平整方法,如使等高线斜坡变粗糙或用带防滑钉的推土机平整,以降低径流速度并使沉积物沉淀下来; - 可用的技术援助。
疏忽责任 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 438 A. 过失中的“陌生人” ELR . . . . . . . . 439 B. 公共滋扰中的特殊伤害要求 . . . 440 C. 责任限制理由的限制 . . . . 442 III. “引导”或执行理由 . . . . . . 443 A. 将公共滋扰“特殊伤害”与 ELR 相协调 . . . . . . . . . . . . . . . . . . . . 443 1. 背景介绍:典型案例 . . . . . . . 443 a. 桥梁封闭造成的商业损失 . . . . . 444 b. 石油或化学品泄漏后商业渔民的业务损失 . . . . . . . . 446 2. 重新制定基于疏导的理论 . . . 448 a. 重新审视“特殊伤害”公共妨害要求 . . . . . . . . . . . . 448 b. 重新审视因疏忽造成的“陌生人”经济损失规则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
全球范围内爆发的 COVID-19 疫情在多个方面带来了前所未有的全球性挑战。大多数疫苗和药物开发都集中在刺突蛋白、病毒 RNA 聚合酶和病毒复制的主要蛋白酶上。利用生物信息学和结构建模方法,我们模拟了新型 SARS-CoV-2 包膜 (E) 蛋白的结构。该病毒的 E 蛋白与 SARS-CoV-1 的 E 蛋白具有序列相似性,并且在 N 端区域高度保守。顺便说一句,与刺突蛋白相比,E 蛋白在分离序列之间表现出较低的差异和可变性。使用同源性建模,我们发现最有利的结构可以作为传导 H + 离子的门控离子通道。结合口袋估计和与水对接,我们确定 N 端区域的 GLU 8 和 ASN 15 非常接近以形成 H 键,这通过将 E 蛋白插入 ERGIC 模拟膜得到进一步验证。此外,可以看到两个不同的“核心”结构,即疏水核心和中央核心,它们可能调节通道的开启/关闭。我们认为这是病毒离子通道活性的一种机制,在病毒感染和发病机制中起着关键作用。此外,它为疫苗开发和产生针对病毒的治疗干预措施提供了结构基础和额外途径。
*这些作者对这项工作的贡献同样贡献:jingxuan he(juh709@psu.edu),ling-nan zou(lxz7@psu.edu)摘要我们描述了通过sp绘制的肽映射的肽映射,这是一个替代性c(sparc-map),一个方法可以识别两个互动互动的互动蛋白。我们的方法基于细菌宿主内的体内亲和力选择,并使用高吞吐量DNA测序结果来推断蛋白质 - 蛋白质相互作用(PPI)接口的位置。SPARC-MAP仅使用常规微生物技术,而不依赖专门的仪器或重新建立蛋白质复合物的体外;它可以调节以检测PPI在广泛的亲和力上。它可以多路复用以并联探测多个PPI。它的非特异性背景可以精确测量,从而使PPI的敏感检测能够检测。使用SPARC-MAP,我们在(p21-PCNA复合物中恢复已知接口。我们还使用SPARC-MAP来探测嘌呤体,这是六种嘌呤生物合成酶的弱结合的复合物,在那里尚无PPI接口。在那里,我们确定满足底物渠道结构要求的接口;我们还确定了参与多种不同相互作用的蛋白质表面,我们使用现场人体细胞中特定于位点的光叠链链接来验证。最后,我们表明SPARC-MAP结果可以对基于机器学习的结构预测对输出施加严格的约束。