出版政策中规定了重复使用此版本手稿的条款和条件。使用受版权保护的作品需要获得权利人(作者或出版商)的同意。根据知识共享许可或出版商定制许可提供的作品可根据其中所含的条款和条件使用。请参阅编辑网站以获取更多信息和条款和条件。此项目是从 IRIS Università Politecnica delle Marche(https://iris.univpm.it)下载的。引用时,请参考已发布的版本。
和 Y 方向................................................................................................................................ 43 图 37:整体测试错位流程.................................................................................................... 44 图 38:电阻和电容值分布(W14 间距 =1.44μm).................................................... 44 图 39:DFT 测试标准的历史......................................................................................................... 48 图 40:IEEE 1149.1 边界扫描测试......................................................................................................... 49 图 41:边界扫描寄存器(BSR)架构......................................................................................... 49 图 42:基于 IEEE 1149.1 的 3D DFT 架构(来源 [62]).................................................... 50 图 43:IEEE Std 1500 包装器组件(来源 [58])............................................................. 51 图 44:包装器边界寄存器(WBR)架构......................................................................................... 51 1500(来源 [62])................................................. 52 图 46:IEEE 1687 概念网络 .............................................................................. 53 图 47:基于 IEEE P1687 的 3D DFT 架构(来源 [64]) ................................................ 53 图 48:串行控制机制(SCM)(来源:[68]) ................................................................ 55 图 49:WBR/DWR 面积与可用面积之比的变化作为
摘要为了确保线弧添加剂制造(WAAM)组件的几何精度,必须分析过程参数如何影响焊珠尺寸和形状。本文提出了一个正式且可重复的程序,通过增强全覆盖的光学扫描,重点关注通过冷金属传递(CMT)焊接过程实现的多层薄壁封闭标本,从而完全表征珠子的几何形状。已经根据过程参数计划制造了一系列圆形标本,并用GOM边缘投影3D光学扫描仪扫描,在Rhinoceros 3D CAD环境中进行了几何处理,并根据ANOVA方法对统计学上的分析进行了分析。已经评估了平均尺寸,横向波动,连续层之间的相互作用以及封闭层路径的割炬开关/关闭区域。已经建立了珠子大小和沉积参数之间的数值相关性。获得的结果还揭示了形状和尺寸的可变性,突出了控制几何学精度的挑战。最后,根据这些结果制定了过程规划指南。
致病细菌造成许多医疗保健和安全问题,包括传染病(He等,2023),食物中毒(Hussain,2016年)和水污染(Some等,2021)。由于其感染性和快速增殖,需要快速,准确的细菌检测和鉴定方法,以减少决策的时间段,从而最大程度地减少医疗保健风险,生态系统影响以及与微生物病原体相关的经济损失。基于琼脂平板上细菌细胞培养的病原体检测和鉴定已经存在不同的方法(Van Belkum和Dunne,2013年),免疫学检测(例如,酶联免疫吸附测定法) ),DNA微阵列(Colle等,2003),生物传感器(Boehm等,2007; Ahmed等,2014),或使用特定试剂敏感的使用,例如,细菌代谢(Ghatole et al。,2020; Hsieh等人,2018年)或lie of eDeNos of AdeNose(Et) ),等(Chen等,2018; Dietvorst等,2020)。然而,由于其简单性,低成本,稳健性和可靠性,传统的板块培养方法仍然是病原体检测和识别的金标准(Rohde等,2017),是细菌污染评估法规中的一种(Word Health Organisation,2017年)。实际上,板培养涉及琼脂平板的细菌生长,直到可以观察到单克隆菌落的形成为止。因此,板块培养在某种程度上容易受到人类错误的影响。菌落在形态,颜色,光泽和不透明度上等等,在仔细观察之后,有时在显微镜下,专家可以区分专家。除此之外,这项技术的主要限制是其持续时间。通常,直到菌落形成的细菌增殖需要超过18小时,对于缓慢增殖的细菌而言,必须超过3 - 4天(Franco-Duarte等,2023; Rajapaksha等,2019; Lee等,2020)。一种极端情况是军团菌,它需要非标准治疗和第二盘培养以进行适当的诊断,从而将细菌识别延迟到几周内(Tronel和Hartemann,2009; McDade,2009)。减少测量时间和加速决策的一种可能性是实施能够检测菌落并在形成的早期阶段识别的先进成像系统(Wang等,2020)。从这个意义上讲,高光谱成像是有利的,因为它以3D数据矩阵或超立方体格式提供了高分辨率图像,其中二维对应于空间信息(x,y坐标),而第三个维度对每个单独的像素(λ坐标)的光谱数据(Gowen等,2015,2015,2015; arrigoni; arrigoni et al arrigoni; arrigoni et al and arrigoni; arrigoni et al and arrigoni et al and arrigoni et al and arrigoni et al and arrigy and and and and。通常使用化学计量学来处理大量信息,以识别数据集中的模式,这些模式在裸眼中并不明显,并创建了能够对新数据进行分类的预测模型(Huang,2022)。然后可以使用这些PC进行基于PCA的判别分析(PCA-DA)(UDDIN主成分分析(PCA)通常与高光谱成像结合使用,以将光谱图像数据集减少为称为主成分(PCS)的代表变量(Abdi和Williams,2010年)。
突触体传统上是从啮齿动物或死后人类脑组织中富集的,但啮齿动物模型缺乏人类特有的突触特征,而死后组织中突触体的功能受到死后间隔的限制,并且通常仅显示疾病终点。此外,由于道德问题和可用性问题,只有少数研究针对人类样本。然而,神经类器官 (NO) 已成为分离完整和活的人类神经末梢以研究人类特有的突触传递方面的可能新来源。此外,突触体的富集通常使用密度梯度离心进行,这需要大量的起始材料。在本研究中,我们开发了一种应用差速离心方案从人类 NO 中富集突触结构的方法。然后,我们使用基于质谱的定量蛋白质组学来记录突触和生长锥特异性蛋白的富集,并在 KCl 刺激下进行定量磷酸化蛋白质组学来证明衍生突触结构的活力和生理功能。
Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y-n c-n c-n c-n d/4。0/。
诸如MOSFET,光电探测器,光伏细胞之类的设备的性能受到接口质量的强烈影响,尤其是介电和硅之间。已知通过高介电常数Diélectrics(High-k)对IF的钝化可以改善这些接口的电性能。在用于表征界面质量的方法中,第二次谐波(SHG)的产生是一种基于非线性光学器件的有希望的敏感和非破坏性技术。在偶极近似中,中心分析材料中的SHG响应(例如Si,Al 2 O 3,Sio 2等)为零。因此,SHG响应主要包含与界面相关的信息,其中对称性被打破。此外,在界面处的电场(E DC)存在下,信号得到加固。该现象称为efish(电场诱导的SHG)。由于电界面场与氧化物(Q OX)和/或界面状态(d IT)中的固定载荷相关联,因此SHG技术对这些电参数敏感。本论文的目的是校准SHG响应,以测量与电介质中固定载荷相关的电场。从SHG实验数据中提取电气信息需要考虑光学现象的影响(吸收,干扰等。),这得益于对所研究结构的第二个谐波的响应进行建模/模拟。我们的仿真程序基于我们为多层人士改编的文献的理论模型。实验是在Si(100)上的几层Al 2 O 3上进行的,在可变条件下沉积并且界面质量非常不同。互补的电气技术,例如Corona负载(COCOS)和容量张力测量(C-V)的表征,使得访问样品的电场并完成SHG结果以进行校准。实验和模拟证明了Si介电的单个校准的可能性还讨论了与多层(绝缘体上的硅)等多层表征相关的一些研究元素,特别是对各个接口处存在的层厚度或电场厚度的SHG响应的影响。
。CC-BY 4.0 国际许可,可在未经同行评审认证的情况下使用)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2021 年 7 月 23 日发布。;https://doi.org/10.1101/2021.07.23.453538 doi:bioRxiv 预印本
针对严重的孟德尔疾病的PolyQ疾病基因超出规范Polyq 220疾病221 PolyQ疾病基因的子集(即AR,ATN1,ATXN2,CACNA1A,CACNA1A,HTT,HTT,TBP)具有222
StormR 是一个 R 包,可轻松从提供的数据库中提取风暴轨迹数据,并生成根据风暴轨迹数据和参数气旋模型重建的地面风场(速度和方向)。然后,StormR 允许我们计算三个汇总统计数据(最大持续风速、功率耗散指数以及在气旋生命周期内达到给定翼速的风的暴露时间)并绘制结果。我们建议使用 IBTrACS(国际气候管理最佳轨迹档案)数据库作为输入( Knapp 等人,2010 年、2018 年)。该数据库提供了自 1841 年以来具有 3 小时时间分辨率的相当全面的热带风暴和气旋记录。但是,只要提供必填字段,就可以使用任何风暴轨迹数据。