分析Nata de Coco的肿胀特征:质量控制挑战和解决方案的研究Mirza Auly Yahya 1,Amalya Nurul Khairi 1,2*,ABM Heral Uddin 3,Andi Patiware Metareakusuma 4 1食品技术研究计划,工业技术,工业技术,Ahmad dahlan dahlan dahlan dahlan dahlan dahlan dahlan dahlan dahlan dahlan dahlan dahlan jl jl jl j l。艾哈迈德·亚尼(Ahmad Yani),塔玛南(Tamanan),班田(Banguntapan),班尔图尔(Bantulapan),班尔图尔(Bantul),年约会特殊地区,55166,印度尼西亚2艾哈迈德·达兰(Ahmad Dahlan Halal)中心,艾哈迈德·达兰大学(Ahmad Dahlan University),JL。S.H. Soepomo博士,沃格博托,乌姆布拉霍,Yogyakarta特殊地区,55164,印度尼西亚3号制药系,药物科,国际伊斯兰大学马来西亚国际伊斯兰大学马来西亚,马来西亚。 苏丹·艾哈迈德·沙阿(Sultan Ahmad Shah),班达·伊德拉·马哈塔(Bandar Indera Mahkota),库坦(Kuantan),帕汉(Pahang darul Makmur),25200年,马来西亚4人文与自然研究所(Rihn),457-4 Motoyama,Kamigamo,Kamigamo,Kamu-ku,Kamu-Ku,Kamu-ku,Kyoto,Kyoto,603-8047,日本 *,日本 *S.H. Soepomo博士,沃格博托,乌姆布拉霍,Yogyakarta特殊地区,55164,印度尼西亚3号制药系,药物科,国际伊斯兰大学马来西亚国际伊斯兰大学马来西亚,马来西亚。苏丹·艾哈迈德·沙阿(Sultan Ahmad Shah),班达·伊德拉·马哈塔(Bandar Indera Mahkota),库坦(Kuantan),帕汉(Pahang darul Makmur),25200年,马来西亚4人文与自然研究所(Rihn),457-4 Motoyama,Kamigamo,Kamigamo,Kamu-ku,Kamu-Ku,Kamu-ku,Kyoto,Kyoto,603-8047,日本 *,日本 *
Artus Army Borges,Armando Borges。嫌疑人。总环境科学,2024,938,pp.173197
缩写:ANZTCT,澳大利亚和新西兰移植和蜂窝疗法注册表; BM,骨髓; BM,骨髓; CI,置信区间; CR,完全响应; Em,东地中海地区; HCT,造血细胞移植; HCT-CI,造血细胞移植合并症指数;人力资源,危险比; IMID,免疫调节药物; IQR,四分位数范围; ISS,国际分场评分; NRM,非释放死亡率; OS,整体生存; PB,外周血; PFS,无进展的生存; PI,蛋白酶体抑制剂; PR,部分反应; R/R,复发/难治; RI,复发发生率; VGPR,非常好的部分响应。欧洲数据由EBMT提供,还包括来自南非的患者(n = 142),哥伦比亚(n = 12),新加坡(n = 48),伊拉克(n = 1),伊朗(n = 114),印度(n = 3)和巴西(n = 7)。
摘要。源自的简单序列重复标记(EST-SSR)是研究遗传多样性,系统发育,进化,比较基因组学,QTL分析和基于基因关联的重要工具。我们已经搜索了用于苏格兰松树的已知EST-SSR(Pinus sylvestris l。)- 世界上主要的森林物种之一。然后,在102个EST-SSR中,有91个建议用于苏格兰松树研究,并与Pinus taeda L.的参考基因组以及Sylvestris的可用基因进行了对齐。通过保守域分析(CDD),基因本体学注释的已知同源物的功能分析以及KEGG途径分析,通过保守的域分析(CDD),基因组位置和相关基因的共识功能进行了共识。许多标记都位于未翻译的区域(主要是3'UTR),以及苏格兰和斑驳的松树基因的编码序列。对于八个标记,其序列已知的序列在任何一个物种中都无法识别基因。这些标记中的七个位于当前基因组组件中没有基因的塔达疟原虫支架区域(v.1.0)。将来可以使用结果来改善人群遗传研究的标记,自适应特征的研究和sylvestris的QTL映射以及其他松树物种。关键词:EST-SSR,Pinus Sylvestris,Marker-Gene关联,标记基因组位置,功能注释。
抽象供应链是动态且复杂的系统。对于在强烈不确定性下运作的人道主义供应链特别是如此。鉴于不断鲜明的人道主义需求差距越来越大,必须更好地了解人道主义供应链系统的行为至关重要。 尽管这一领域的学术成果越来越不断提高,但缺乏经验研究,这些研究对人道主义供应链的综合观点和支持决策者提供了基于事实的证据。 基于四个广泛的案例研究和现有文献,我们开发了一个系统动力学模型,该模型以其集中式,混合和分散的环境形式反映了人道主义组织的运营现实。 该模型提供了荷利供应链的视图,并衡量了有关响应成本,交付交付时间和对当地经济的影响的操作绩效。 此外,我们研究了准备投资的影响,以提高供应链中的运营绩效,并在可用的有限资源中提供更多的人道主义援助。 最后,我们使用模型分析了主要冲击的影响,例如Covid-19大流行,以评估人道主义供应链的脆弱性。 结果表明,在非投资案例以及已经进行了准备投资的情况下,运营环境,产品和灾难特征对供应链绩效的影响很大。 供应链设置的可取性在很大程度上取决于所选的指标。鉴于不断鲜明的人道主义需求差距越来越大,必须更好地了解人道主义供应链系统的行为至关重要。尽管这一领域的学术成果越来越不断提高,但缺乏经验研究,这些研究对人道主义供应链的综合观点和支持决策者提供了基于事实的证据。基于四个广泛的案例研究和现有文献,我们开发了一个系统动力学模型,该模型以其集中式,混合和分散的环境形式反映了人道主义组织的运营现实。该模型提供了荷利供应链的视图,并衡量了有关响应成本,交付交付时间和对当地经济的影响的操作绩效。此外,我们研究了准备投资的影响,以提高供应链中的运营绩效,并在可用的有限资源中提供更多的人道主义援助。最后,我们使用模型分析了主要冲击的影响,例如Covid-19大流行,以评估人道主义供应链的脆弱性。结果表明,在非投资案例以及已经进行了准备投资的情况下,运营环境,产品和灾难特征对供应链绩效的影响很大。供应链设置的可取性在很大程度上取决于所选的指标。特别是对于低价值项目,我们发现分散的设置的供应链成本最低,而对于高价值项目,本地和国际采购之间的价格差异决定了哪种设置是最具成本效益的设置。因此,最终,这些发现强调了需要应用适当指标并确定其权衡的必要性,以全面分析人道主义供应链环境的绩效。在这种情况下,新引入的人道主义回报概念可以发挥重要作用。
抽象目标:镰状细胞疾病(SCD)是全球最常见的单基因疾病。心理和行为因素通常被报告为在预测SCD健康结果中起着重要作用。专注于适应特定的健康状况及其治疗时,事实证明,健康与疾病的常识模型(CSM)具有启发式价值。在其他健康状况下,疾病结果直接受到疾病感知的影响。因此,这项研究的目的是探索修订后的疾病感知问卷(IPQ-R)的心理测量专有。设计:我们对517例镰状细胞疾病患者进行了横断面评估,并收集了406 IPQ-R的结果。通过这些数据,我们验证了信仰量表的因子结构和提出的修改,以通过确定的因素分析来改善其对数据的拟合。此外,我们通过探索性因素分析探索了因果归因量表的阶乘结构。结果:初始模型与数据显示不良。在结构修改后,消除了两个具有低负载的项目(模型2),在项目(模型3)和项目重新分配之间添加的协方差(模型4),最后提出的模型提出了与数据的正确拟合。在进行此模型规范之前,我们审查并编辑了九项研究,探讨了IPQ-R的心理计量学特性,以突出其他已将IPQ-R适应特定人群的作者进行的所有修改,并允许与我们自己的修改进行比较。结论:考虑到以前的发现,这项研究表明,在IPQ-R的尺寸结构上需要进一步的工作。
F. Vautrin,P。Piveteau,M。Cannavacciuolo,P。Barre,C。Chauvin等。土壤微生物群落对消化施用的短期反应取决于消化和土壤类型的特征。应用土壤生态学,2024,193,pp.Art。105105。10.1016/j.apsoil.2023.105105。hal- 04266661
结果:在CP/CPP患者中观察到大脑功能的深刻改变。这些变化涉及通过DC分析确定的多个大脑区域,包括右前扣带回皮层(ACC),左下额叶皮层,左杏仁核,右侧额叶皮层和双侧岛。REHO分析显示,右丘脑,左下额三角皮层,右上颞极,左ACC和右上额叶皮层(群集> 20素voxels,grf校正,p <0.05)。使用REHO和DC进行分析表明,与症状严重程度不同的大脑改变被定位在疼痛感知和调节区域中。具体而言,右ACC中的DC值与NIH-CPSI测量的症状的严重程度(AUC = 0.9654,p <0.0001)有线性相关。
聚合物复合材料在我们的日常生活中无处不在,因为它们的功能/机械性能[1],这种材料的机械性能是由构成结构[2]的纳米级/显微镜特征所支持的,并且在此主题上有一些出色的评论[3-7]。传统的机械测试方法获取有关聚合物及其复合材料的宏观物理特性的信息,重要的是要注意,可能会错过有关这些材料中存在的纳米级/微观结构的贡献的信息[8],并且在分析生物学样本(尤其是用于评估细胞机械的方法)方面存在重大兴趣。多尺度结构和宏观特性的相关性是当前分析研究的一个领域[10,11];可以采用各种不同的实验室和计算技术来理解
聚合物复合材料在我们的日常生活中无处不在,因为它们的功能/机械性能[1],这种材料的机械性能是由构成结构[2]的纳米级/显微镜特征所支持的,并且在此主题上有一些出色的评论[3-7]。传统的机械测试方法获取有关聚合物及其复合材料的宏观物理特性的信息,重要的是要注意,可能会错过有关这些材料中存在的纳米级/微观结构的贡献的信息[8],并且在分析生物学样本(尤其是用于评估细胞机械的方法)方面存在重大兴趣。多尺度结构和宏观特性的相关性是当前分析研究的一个领域[10,11];可以采用各种不同的实验室和计算技术来理解