Mustang Advanced Engineering 是一家独特的公司,其在定制测试台架设计和建造方面的专业知识几乎可以与世界上任何其他公司相媲美。虽然定制底盘测功机系统一直是其核心业务的重要组成部分,但 MAE 增加了各种各样的产品,并在几乎所有类型的测功机测试台架方面获得了行业领先的专业知识,包括交流和涡流发动机测功机系统、变速箱测试台架、牵引测功机和各种类型和尺寸的定制测试台架。当前的 MAE 产品系列包括发动机测试单元、变速箱测试单元、定制底盘测功机、生产和在制品测试系统、集装箱测试单元和完整的动力系统测试单元,包括真正庞大的 8 x 8 底盘测功机系统。
1。获得并识别零件 - 收集材料清单(BOM)中列出的所有组件。验证每个零件是否匹配所需的规格(例如,大小,材料或类型)在图或BOM中概述的。2。准备C通道 - 将铝C通道张开在水平表面上,以防止组装过程中的任何翘曲。根据图中显示的各自位置排列C通道。3。对齐对峙 - 将僵局与孔保持在C通道中的预钻孔的位置。确保僵局与图中指定的长度匹配。4。组装C通道 - 使用螺钉将C通道牢固地固定在一起,将它们穿过对齐的孔和对峙。均匀地拧紧螺钉,以避免未对准或不必要的张力。
2000.5 – 后防倾杆;车轮和车轴偏移的影响;使操纵更一致;齿轮比和 RPM 的关系 2000.6 – 后弹簧分割的影响;使用制动浮子 2000.7 – 后期车型在路面上的刹车失灵;极惯性矩(偏航惯性) 2000.8 – 冲击动力学 – 冲击测功机能告诉您和不能告诉您什么;气压的影响;控制比;固有频率、阻尼强度和抓地力 2000.9 – 如何为四轮定位对汽车进行拉线;主销后倾角的影响 2000.10 – 检查后轴的直线度;扭矩臂与拉杆 2000.11 – 建议的淡季阅读材料 2000.12 – 弹簧、滚动和转弯平衡;短潘哈德杆与长潘哈德杆 2001.1 – 短道车的风洞测试;后脚轮;堆叠式螺旋弹簧 2001.2 – 所需框架刚度;制作压载物 2001.3 – 安全问题 – HANS 装置;软壁设计要求 2001.4 – 第 5 个线圈的位置和速率;软壁更新;汽车上的软鼻子 2001.5 – 普通汽车中的铬钼;后交错与交叉
在基因设计的大肠杆菌中生产N连接的糖蛋白具有降低成本,简化生物程序和增强定制的显着潜力。然而,建造稳定和低成本的微生物细胞工厂,用于人性化的N-糖基化重组蛋白的有效产生仍然是一个巨大的挑战。In this study, we developed a glyco-engineered E. coli chassis to produce N -glycosylated proteins with the human-like glycan Gal- β -1,4-GlcNAc- β -1,3-Gal- β -1,3- GlcNAc-, containing the human glycoform Gal- β -1,4-GlcNAc- β -1,3-.我们最初的努力是用寡素胆汁含量pGLB和糖基转移酶LSGCDEF替换大肠杆菌XL1-蓝色菌株的基因组中的各种基因座,以构建大肠杆菌。此外,我们系统地优化了基因组中的启动子区域以调节转录水平。随后,利用带有靶蛋白的质粒,我们成功地获得了N-糖基化蛋白,其含量约为320 mg/L,其产量为100%四糖修饰。此外,我们使用含有质粒的质粒构建了代谢途径,该质粒含有靶蛋白的双表达盒和四糖底盘细胞中的CMP-Sialic酸合成,从而导致终端α-2,3- siAia llyag-65 miAia saimia saiia saimiA siaiia saimiA siaia saimia syaiia和65-My ly a f as 65 m s h 65 m s h 65 m s y 40%的功效糖蛋白会刺激。我们的发现铺平了进一步探索siAllated人类的n -like n-糖蛋白在插件大肠杆菌底盘中的含量中产生不同联系(α-2,3/α-2,6/α-2,8)的方式,为工业尺度生产奠定了基础。
绿色和可持续材料的快速发展为应用研究领域开辟了新的可能性。此类材料包括纳米纤维素复合材料,它可以将许多组件集成到复合材料中并为智能设备提供良好的底盘。在我们的研究中,我们评估了将纳米纤维素复合材料转变为信息存储或处理设备的四种方法:1)纳米纤维素可以成为合适的载体材料并保护存储在 DNA 中的信息。2)核苷酸加工酶(聚合酶和核酸外切酶)与光门控域融合后可以由光控制;核苷酸底物特异性可以通过突变或 pH 值变化(读入和读出信息)来改变。3)可以实现半导体和电子功能:我们表明,通过碘处理纳米纤维素取代硅(包括微结构)而呈现电子状态。测量了纳米纤维素的半导体特性,并模拟了包括单电子晶体管(SET)在内的电位及其特性。电流也可以通过 G-四链体 DNA 分子由 DNA 传输;这些以及经典的硅半导体可以轻松集成到纳米纤维素复合材料中。4) 为了详细说明智能纳米纤维素芯片设备的小型化和集成化,我们展示了纳米纤维素中的 pH 敏感染料、纳米孔的创建和细菌膜上的激酶微图案以及数字 PCR 微孔。未来的应用潜力包括纳米 3D 打印和与 DNA 存储和传统电子产品集成的快速分子处理器(例如 SET)。这还将带来用于信息处理的环保纳米纤维素芯片以及用于生物医学应用和纳米工厂的智能纳米纤维素复合材料。
带有内燃机的车辆技术在19世纪末出现。尽管不是很清楚,但电动汽车的首次原型研究与同一时期一致。今天,诸如全球变暖,污染和化石燃料储备的减少等因素加速了对电动汽车技术的过渡。在这种情况下,电动驱动系统的新系统结构与传统车辆结构的不同。在这项研究中,进行了电动汽车的底盘设计。在设计时,将在ANSYS计划的帮助下对电池组进行建模和模拟的部分,以保护对撞击特别敏感的电池和电子组件。为了在法规和标准中指定的滥用测试中取得成功,应正确进行材料选择和设计。在这种情况下,正确的材料是根据研究确定的,并进行了3D模拟,并在模拟环境中进行了崩溃测试。结果,在许多底盘模型中选择了管型底盘,发现7079铝合金适合原材料。根据仿真结果,可以看出设计和所选合金是合适的。
近年来,全球粮食和能源危机引起了广泛关注。植物合成生物学正成为解决这些问题的一个有吸引力的解决方案,它将植物生物学与工程原理相结合,设计和生产价格低廉且易于扩大规模的新设备或产品。植物合成生物学以植物为底盘,设计和构建具有特定功能的新型生物系统,或通过基因编辑和代谢工程等技术生产有价值的化合物。虽然植物合成生物学在过去几年中取得了重大进展,但对其潜在的生物合成和调控机制的全面理解仍有待探索。本研究主题包含一系列原创研究论文和评论,共同呈现绿色生物制造中植物底盘和植物基因的最新研究趋势和方法,旨在促进植物底盘材料在生物制造中的更广泛应用和植物合成生物学的发展。在这里,我们重点介绍了几项旨在优化代谢途径和植物底盘整合的研究,以经济高效的方式生产有价值的化合物。涉及各种策略,包括多组学分析、底盘开发和基因功能研究。烟草是一种植物底盘,已广泛用于植物合成生物学的体外培养。因此,研究其体外培养中的代谢网络具有重要意义。这有助于促进体外技术在植物繁殖中的应用。为了全面了解烟草体外培养中的代谢网络,Yu等人。建立了一个基因组规模的代谢网络(GSMN),这是一种旨在促进整体代谢谱表征的工具。与土壤种植的烟草相比,体外烟草生长速度较慢、生物量减少、光合作用受到抑制、代谢物和代谢途径发生改变。辣木及其相关物种在健康、食品、化妆品和制药行业具有潜在应用。Klimek-Szczykutowicz 等人提出综述,
SIMOREG DC MASTER 变频器不仅在符合国际标准方面是全球性品牌。在西门子全球服务网络的背景下,服务并不止于精细调整的物流概念,以实现短交货时间、快速订单处理和及时服务。我们在 110 多个国家/地区设有 180 多个服务中心,全天候待命以解决故障并为产品和系统的所有方面提供个性化的业务服务。作为专业服务提供商,我们的 OnCall 服务提供技术专业知识和物流以及确保高效服务访问所需的所有其他组件。
BuiltSAFE AVIO-2353 是一款 3U OpenVPX 主板,具有丰富的航空电子 I/O。它具有 MIL-STD-1553、ARINC-429、RS232/422/485 和 GPIO,可提供用于与航空电子设备和其他处理子系统的电子传感器进行通信的所有标准接口。利用 Mercury FlexIO™ 技术,BuiltSAFE AVIO-2353 引脚排列可根据特定应用要求进行定制(I/O 数量和类型)。AVIO-2353 可通过 OpenVPX PCIe 总线或安装在其 XMC 夹层站点上的 XMC SBC(MFCC-8558)驱动。AVIO-2353 在设计时充分考虑了 DAL 认证,可选择配备认证套件,以确保成功通过认证,从而获得 DO-178C/DO-254 DAL-C 认证系统。• DAL-C/A (DO-178C/DO-254)
•在德国跑车的高级模型中,阻尼技术的第一卷生产应用•主动底盘技术在转向,加速和制动操作期间减少了车辆的投球和滚动•ZF是行业领导者,具有25年的电子控制底盘阻尼系统开发Friedrichshafen的经验。潮湿技术的新时代已经开始,因为ZF的Smotion现在正在将稳定性和动态融合在一起,以提高舒适性和驾驶性能。这个革命性系统将阻尼力完全适应相应的驾驶状况,同时还为每个车轮启动非常快速的垂直运动,从而积极抬起车辆以确保最佳的道路持有性能,同时增强更愉快的驾驶体验。Smotion的这种能力创造了独特的驾驶体验。该系统的阻尼器技术现已用于两种新的德国高级制造商的新型号。在汽车底盘的情况下,将出色的动态特性与高级舒适性相结合通常是具有挑战性的。对汽车制造商来说更容易,因为几乎消除了动态转向,制动和加速的投球和滚动操作。“我们完全活跃的Smotion底盘系统几乎可以在某些驾驶情况下完全防止车身运动,” ZF管理委员会成员,底盘解决方案部门负责人Peter Holdmann博士解释说。“同时,配备了Smotion的车辆的舒适特性大大增加。”