根据其法律规定,巴基斯坦的高等教育委员会(HEC)已通过其国家课程修订委员会(NCRC)开发并定期更新课程。这些委员会通常由主题专家,研究人员以及认证机构,专业理事会和行业利益相关者的代表组成。响应不断发展的需求,HEC与巴基斯坦科学院(PAS)合作,已承担了在国家资格资格框架的第6级和7级的生物化学课程中制定强大的学位课程标准的任务。这些标准是根据HEC的本科教育政策对第1(2023年)和研究生教育政策(2023)的精心结构的,可确保与国家优先事项和国际教育标准保持一致。
sub:IST SEM新生(SEP方案)和I SEM(中继器)的行为。ii&v sem(Fresher&Repeater's)(NEP方案)BA / BA(表演艺术) / BVA / BVA(动画与多媒体) / bfa / bfa / bsw / b.sc / b.sc / b.sc(时尚与服装设计) / b.sc(Interior Design) (生物科学) / b.sc(地理) / bca / b.com./b.com(保险和精算师) / b.com(物流与供应链管理) / b.com(旅游与旅行管理) / bba / bba(航空管理) / ddm / ddm / bhm&bva&bva&bva vii vii sem(新生)和1月至2025年1月至2025年的其他说明。1 BCWD通知号BCK/SS/CR-34/2014-15,日期:14.08.2014。2号ACA-I/A4/UG-CALENDAR/2024-25,日期:08.07.2024。
背景1。每年在印度道路上发生大量道路事故,导致超过四万人死亡。对过去的各种道路事故研究的病因分析,该研究因驾驶员故障而导致大多数道路事故发生。2019年度报告表明,所有道路事故中有82%是由于驾驶员的过错。尽管在C. M. V.规则中有足够的规定,这些规则直接和间接有助于确保驾驶员良好的驾驶技能和对驾驶员道路规则规则的了解,但迫切需要对现有且有抱负的驾驶员进行理论和实用性驾驶培训。还需要基于客观的测试技能科学过程来设定标准和监视驾驶培训和驾驶执照问题的需求。因此,根据2019年《机动车法案(修订)法》规定的规定,印度政府已修改了1989年的中央汽车规则,日期为2021年6月7日的通知,以使驾驶训练和系统地进行驾驶培训,使经过认可的驾驶训练中心具有某些功能,例如驾驶驾驶驾驶驾驶驾驶和驾驶培训中心的一定功能,使其成为驾驶培训中心的驾驶中心,使其成为确定性的驾驶中心的投入,以确保驾驶培训中的驾驶中的驾驶。2。印度政府打算在第15个财务委员会周期期间在该国建立更多的驾驶培训和研究模型学院。已决定在3层系统中设置IDTR。3。RDTC提案应要求对各个州政府进行制裁。IDTR中的模型IDTR应为拥有足够土地(10-15英亩)的模型驾驶员培训研究所,并应包括现代IDTR所需的完整基础设施。在II中,建议在跨州开发区域驾驶员培训中心(S) - (RDTC)(不包括提出或开发IDTR的州的州的地区),最好是在土地上衡量约3英亩的土地,该土地约3英亩,基本支持基础设施,包括自动测试轨道,包括自动测试轨道。在III级,驾驶培训中心(DTC)提议在各州的地区层面开发(不包括提议或开发IDTR或RDTC的州的地区),对土地的量度至少为2英亩,这些土地最少有2英亩的基本支持基础设施。预计将由私营部门在PPP模式下设立和操作两个层。在第15财务委员会周期期间,将提供财政支持,以在试点基础上建立此类机构。4。根据本计划设立的中心应遵守1989年《中央汽车规则》的规定。5。根据该计划建立的中心将由州政府授权为经认可的驾驶培训中心。在成功完成该中心的培训后,驾驶许可证有抱负的人应在1989年的CMV规则的表格5B中签发证书。持有人的课程完成证书(Form5b)将免除驾驶测试的要求。
摘要:纳米晶钙碳酸钙(CACO 3)和无定形可CACO 3(ACC)是越来越多的技术兴趣的材料。如今,它们主要是由稳定剂存在的Caco 3试剂湿反应产生的。 但是,最近发现可以通过计算机来产生ACC。 方解石和/或arogonite是由ACC前体形成的软体壳的矿物相。 在这里,我们调查了以潜在的工业规模转换的可能性,即从废物软体动物贝壳中转换为纳米晶体Caco 3和ACC的生物性可可3(BCC)。 使用了水产养殖物种的废物贝壳,即使用牡蛎(Crassostrea gigas,低毫克方解石),扇贝(Pecten jacobaeus,Medive-mg方解石)和蛤(Chamelea Gallina,Aragonite)。 通过使用不同的分散溶剂和潜在的ACC稳定剂来进行球铣削过程。 使用了结构,形态和光谱表征技术。 结果表明,机械化学过程产生了晶体域大小和ACC结构域的形成的降低,而ACC域的形成是在微覆盖骨料中共存的。 有趣的是,BCC的行为与地球CACO 3(GCC)的行为不同,在较长的铣削时间(24小时)时,ACC重新延伸为结晶阶段。 在机械化学处理的BCC的各种环境中的衰老产生了方解石和aragonite的混合物,以特异性的质量比,而GCC的ACC仅转化为方解石。 ■简介如今,它们主要是由稳定剂存在的Caco 3试剂湿反应产生的。但是,最近发现可以通过计算机来产生ACC。方解石和/或arogonite是由ACC前体形成的软体壳的矿物相。在这里,我们调查了以潜在的工业规模转换的可能性,即从废物软体动物贝壳中转换为纳米晶体Caco 3和ACC的生物性可可3(BCC)。使用了水产养殖物种的废物贝壳,即使用牡蛎(Crassostrea gigas,低毫克方解石),扇贝(Pecten jacobaeus,Medive-mg方解石)和蛤(Chamelea Gallina,Aragonite)。通过使用不同的分散溶剂和潜在的ACC稳定剂来进行球铣削过程。使用了结构,形态和光谱表征技术。结果表明,机械化学过程产生了晶体域大小和ACC结构域的形成的降低,而ACC域的形成是在微覆盖骨料中共存的。有趣的是,BCC的行为与地球CACO 3(GCC)的行为不同,在较长的铣削时间(24小时)时,ACC重新延伸为结晶阶段。在机械化学处理的BCC的各种环境中的衰老产生了方解石和aragonite的混合物,以特异性的质量比,而GCC的ACC仅转化为方解石。■简介总而言之,这项研究表明,BCC可以产生纳米晶CaCO 3和具有物种特异性特征的ACC复合材料或混合物。这些材料可以扩大从医学到材料科学的CACO 3的应用程序的广泛领域。
BCMB 430 - 分析生物化学和生物物理学 3 学分 课程目标:了解构成生物科学中使用的技术和仪器基础的物理科学原理 先决条件:生命科学学士学位课程。 第一单元 - 电化学技术和光度测定 11 小时 电化学的基本原理 - pH 电极 - 离子选择性 - 气体传感和氧电极 - 生物传感器的基本细节。比色法和分光光度法的原理和技术-比尔-朗伯定律-仪器-低色度和增色度-荧光测定-流式细胞术-原子吸收光谱法-圆二色性-光学旋光色散-核磁共振光谱-红外光谱第二单元-显微镜 7 小时显微镜-基本原理和应用-光-化合物-相衬-暗场-荧光显微镜扫描电子显微镜-透射电子显微镜 (TEM) -扫描隧道显微镜- (STM) -共聚焦显微镜。第三单元 - 离心 6 小时离心的基本原理 - 仪器、离心装置 - 离心机的类型 - 转子、配件 - 离心方法 - 沉降速度 - 沉降平衡 - 胶体 - 细胞分离方法。第四单元 – 色谱法 10 小时 色谱法的类型 - 柱色谱法、薄层色谱法、纸色谱法、吸附色谱法、分配色谱法、气液离子交换色谱法、亲和色谱法、高效液相色谱法 - 每种类型的原理 - 仪器和附件 - 检测方法和系统 - 定性和定量方面 - 应用;第五单元 – 电泳法 6 小时 电泳类型 - 纸和凝胶 - 琼脂糖和 PAGE - 脉冲场 - 毛细管 - 等电聚焦 - 印迹技术:西方、南方和北方。应用教科书 1. James, P. Allen. (2008). 生物物理化学,Wiley Blackwell,新泽西。2. Wilson, K. 和 Walker, J. (2010) 生物化学和分子生物学原理和技术,剑桥大学出版社,剑桥。推荐阅读 1. Horst, F. (2010) 基本一维和二维核磁共振波谱学,Wiley-VCH,新泽西。 2. Murphy, DB 和 Davidson, MW (2012) 光学显微镜和电子成像基础,Wiley-Blackwell,新泽西州。3. Freifelder, DM (1983) 物理生物化学 - 生物化学和分子生物学应用,WH Freeman,纽约
摘要:将森林植被纳入农业可确保自然资源保护和较高的碳封存。由于更好的土地覆盖管理,农林业系统中的土壤和径流损失减少了。在农作物之间种植树木或灌木后,土壤肥力逐渐改善。农林业系统中的土壤和水分流失减少可保护土壤质量和生育能力。连续的垃圾倒倒和根生物量增加农林业系统中的土壤碳含量,并改善了土壤物理,化学和生物学特性。系统效率提高了农林业的效率,反过来又提高了农业的生产力和可持续性。碳固化发生在农林业的较高水平上,这可能是最佳的气候变化选择。
最近,出现了一种新的蛋白质蛋白质相互作用研究的方法。可以使用田野和同事开发的“两杂交系统”(1,2)来寻找新的相互作用蛋白质,或者验证和表征可能会根据遗传或生物化学数据关联的蛋白质之间的相互作用。两种杂交系统是一种分子遗传方法,它利用酵母转录因子GAL4的结构柔韧性。GAL4蛋白包含两个结构域,即DNA结合域和转录激活剂结构域。这两个结构域不必成为同一蛋白的一部分来完成转录激活(3)。当两个结构域分别融合到两个无关但相互作用的蛋白质时,由于蛋白质 - 蛋白质相互作用,可以实现转录激活。通常,使用两种杂交系统对新的相互作用蛋白进行搜索是通过将含有UASC的集成拷贝的酵母菌菌株共转换。1J-LACZ报告基因和两个质粒(2,4-6)。一个质粒编码GAL4的DNA结合结构域与感兴趣的蛋白质的融合,而另一个质粒(库质粒)编码GAL4转录激活结构域的融合以随机生成的编码区域。因此,DNA结合结构域融合将与报告基因上游的UASGAL元件结合。如果由文库融合质粒编码的蛋白质与感兴趣的蛋白质相互作用,则转录激活结构域成为报告基因上游的共定位,从而导致转录激活。有效使用两个杂交系统需要产生大量的酵母转化体。由于酵母的转化仍然比细菌的效率低四个数量级,因此对于详尽的cDNA文库筛网来说,转化可能是限制步骤。在本文中,我们设计了一种简单的方法,可以消除对转化的需求,并允许用户搜索
模块3:链接列表单独链接列表:内存中的表示形式,多个操作的算法:遍历,搜索,插入,从链接列表中删除,删除;链接的堆栈和队列表示,标题节点,双重链接列表:对其进行操作和算法分析;循环链接列表:所有操作的算法和复杂性分析。树:基本的树术语,不同类型的树:二进制树,螺纹二进制树,二进制搜索树,AVL树;通过复杂性分析,对每种树及其算法的树木操作。二进制树的应用。B树,B+树:定义,算法和分析。