ERATOSTHENES 卓越中心是一个自主的卓越中心,塞浦路斯理工大学 (CUT) 是其唯一利益相关者,旨在成为一个可行的、可持续的地球观测、空间技术和地理空间分析卓越中心。CUT 在地球观测和地理空间分析方面拥有 13 年的经验。通过“EXCELSIOR”H2020 合作项目 (2019-2026),ERATOSTHENES 卓越中心致力于成为一个卓越的地球观测和地理空间信息数字创新中心,提供教育、负责任的研究、开放式创新和应用服务,以支持塞浦路斯的发展。ERATOSTHENES 卓越中心希望积极为欧洲研究区 (ERA) 在大气和气候、弹性社会和地球大数据分析方面的优先事项做出贡献,并成为东地中海、中东和北非 (EMMENA) 地区研究和创新的参考地球观测/地理信息中心。
登革热是一种复杂的arboviral疾病,可能在15世纪至17世纪在非洲的奴隶船上在美洲引入了美洲。登革热病毒(DENV)具有四种不同的亚型DENV1-4,属于Flaviviridae家族Flavivivirus属。严重的病例可以演变成登革热的出血热和登革热综合征,这些综合征通常是致命的,迄今为止尚无有效的治疗。近年来,全球报告了登革热病例的数量急剧增加,每年估计有1亿案病例,预计每3 - 4年一次爆发一次(1)。与全球情景有关的这种形成鲜明对比,与缺乏登革热疫苗可用性(2)来应对这种免疫接种需求。在我们的研究中,我们研究了当前的疫苗开发挑战,从知识治理的角度讨论了技术策略和生产规模,以克服这种僵局。最近在拉丁美洲和加勒比海国家的登革热爆发螺旋出现了很好的说明,案件和死亡人数的迅速增加。尽管以前成功地根除了伊德斯埃及埃及蚊子,但到1962年在美洲的18个国家 /地区,由于构想良好的大陆计划(1947-1970),但从1971年到1999年,蚊子的重新生产和恢复原状完全改变了该地区的流行病学情景。在巴西和拉丁美洲国家中已有近80%的全球案件报告。这些多方面因素已导致媒介的脱位和受感染的人群的发展自2023年初以来,巴西经历了严重的爆发,影响了巴西大多数国家,卫生部长从2024年1月至2024年6月,卫生部长报告了630万例登革热病例(DF)案件,数十年来最高的历史记录(3)。尽管如此,重要的是要强调,尽管在热带地区,这种流行病的集中度,但不应将登革热视为热带地区的独有。Aedes reintroduction and DF outbreak spirals in the Americas and other continents have been attributed to complex interactions of herd immunity with climatic and eco-social determinants, i.e., global warming, El Niño, accelerated urbanization, travel, migration, poverty, lack of basic sanitation, deforestation, and low priority given to vector control activities ( 4 ).
基因组结构变体,包括缺失,重复,反演和遗传序列的易位,是遗传多样性的丰富资源。特别是,大西洋鲑鱼基因组显示出基因组结构变异的极端水平,这可能是由于它们最近的全基因组重复的独特历史所致。大西洋鲑鱼基因组中的结构变异是进化基因组学和水产养殖基因组学中最有希望的边界之一。然而,由于其复杂的性质,以及结构变体如何以功能优势驱动适应性进化,这尚待澄清。
在prazeodima ip ip of prazeodima的colloide ananoclins的机构中关于MH22a Shaydulin的开发,OREL EO,Batygov SH,Uvarov Ov,Iskhakova LD,Silaev GO,Zharkov Go MN,Khutorskaya IA,Jacobson DE,Chernobay RA,Al-Haj Ayub Amm,Skopin Pi,Orel Yu.v.,Weiner Yu.g.,Makhov VN。........ 160
糖尿病足溃疡 (DFU) 是影响糖尿病患者的一种严重并发症,超过一半的 DFU 都有感染风险。在这些感染中,约 20% 需要截肢 (1、2)。这是一个值得关注的重要问题,因为因 DFU 而截肢的患者的死亡率很高,预计超过一半的患者会在五年内死亡 (3)。此外,治疗和管理 DFU 及其并发症的经济负担超过了五大癌症,仅在美国,每年的费用就超过 110 亿美元 (4)。随着糖尿病 (DM) 患病率的持续上升,DFU 预计将成为全球卫生系统的更大负担,并且可能是最昂贵的糖尿病并发症之一 (5)。尽管在确定 DFU 治疗的新疗法方面取得了显着进步,但对 DFU 的根本病因和管理的早期诊断仍然具有挑战性。 DFU 愈合受损是一种复杂的发病机制,由多种因素引起,包括糖尿病足部感染、伤口缺血、免疫系统衰竭和血糖控制不佳(6-8)。DFU 管理需要在多个时间点评估感染和缺血情况以便更好地管理,但由于其侵入性,目前这种方法受到限制。由于农村地区无法接触到 DFU 伤口中心和临床专家,这个问题更加严重。因此,临床对用于分析伤口感染和缺血检测的非侵入性工具的需求尚未得到满足,这两个关键因素是伤口愈合受损。近年来,深度学习算法在疾病的检测和诊断方面表现出巨大的潜力,特别是在医学成像、放射学和病理学方面(9-11)。这导致了深度学习图像分析作为一种辅助工具的出现,它支持临床医生进行决策,提高疾病诊断和治疗的效率和准确性(12)。深度学习在糖尿病足溃疡的分类和定位方面也显示出了良好的效果。它在缺血和感染分类方面取得了很高的准确率,分别为 87.5% 至 95.4% 和 73% 至 93.5%(13-16)。此外,研究人员在糖尿病足溃疡定位方面也取得了重大进展,平均精度 (mAP) 值在 0.5782 至 0.6940 之间,F1 分数在 0.6612 至 0.7434 之间(17、18)。尽管取得了这些进展,但其中许多工具仍处于开发的早期阶段,缺乏预测感染、缺血和其他对糖尿病足溃疡伤口管理至关重要的身体特征的自动分析能力。此外,目前的伤口分析平台依赖于专有硬件附件,例如热扫描仪(例如 Pod Metrics 的 SmartMat)、使用结构光或激光的 3D 扫描仪(例如 Ekare.ai 的 Insight 3D 和 Swift Medical 的 Ray 1),和光学相干断层扫描 (OCT) 用于可视化和量化与糖尿病足溃疡形成相关的微血管结构 ( 19 , 20 )。这些专门附件的需求可能会限制普通人群获得糖尿病足溃疡治疗的机会。为了解决这些限制,开发一种非侵入性和自动化的工具至关重要,即使在资源有限的地区,也可以全面分析伤口组织。本研究旨在
间谍肽 - 13个氨基酸标签和间谍蛋白蛋白来自第二个免疫球蛋白样胶原蛋白粘附蛋白结构蛋白,源自pyogenes链球菌的纤连蛋白结合蛋白。胶原蛋白粘合剂结构域自然包含赖氨酸(LYS)侧链和天冬氨酸(ASP)的侧链之间的无肽内键[5,6]。通过拆分该域并进行碎片的合理工程,即肽,即包含反应性ASP残基的spytag和小蛋白质,即含有反应性Lys残基的spycatcher,是含反应性Lys残基和谷氨酸(GLU)残基所必需的,形成型催化剂时,将形成型三重时,该蛋白是键合的。间谍反应在pH,温度和缓冲液的不同条件下以高收率发生,并且自从其概念之后,这两个组件随后被优化,创建版本2和3(spytag2-spycatcher2,spytag3-spycatcher3),在该反应时间从小时缩短到5分钟[5]。
1992 年捷克斯洛伐克的国有资产私有化被广泛誉为前共产主义经济体经济转型中最令人印象深刻的成就之一。在 1993 年 1 月 1 日分裂为两个国家之前,捷克斯洛伐克迅速大规模地进行了国有企业私有化。这一过程的一个关键要素是代金券私有化——几乎免费向公民发放代金券,公民则用代金券竞购国有企业的股份。捷克斯洛伐克代金券方案的设计和实施引发了许多国家学者和政策制定者的激烈辩论。一小部分俄罗斯企业已经通过代金券方案进行了私有化,其他转型经济体也可能引入类似的制度。
增加饱和脂肪酸与磷脂的相对结合。因此,利用脂肪酸进行磷脂生物合成的步骤之一是温度控制的。在体内观察到的 3H-油酸和“C-棕榈酸混合物的温度效应可以通过使用这些脂肪酸的辅酶 A 衍生物的混合物将 a-甘油磷酸酰化为溶血磷脂和磷脂酸来在体外证实。在大肠杆菌提取物中,棕榈酰和油酰辅酶 A 的相对转酰速率随孵育温度而变化,其方式模拟体内观察到的温度控制。体外合成的磷脂酸在 d 位显示出油酸的显著富集,类似于体内合成的磷脂中观察到的位置特异性。
B.Pradeep Khanth 7 月 21 日 针对多媒体应用的增强型编解码器设计 Sathiya RR 7 月 23 日 医疗保健中的云计算 J. Angel Sajani 7 月 21 日 使用人工智能和深度学习自动诊断神经系统疾病 M.Vijayakumar 7 月 19 日 用于容错和安全应用的高速和节能 VLSI 架构 Asha Stebi MB 1 月 24 日 具有先进感官和移动能力的多面人形机器人的设计和开发 Dakshina。 DS 7月24日 使用基于皮肤镜图像的高级深度学习网络自动检测皮肤癌 AnlinSahaya 婴儿 Tinu 1月22日 基于深度学习的多模态脑成像用于肿瘤检测 Dr. A. BHUVANESH 是 2022 是 Dr. A. PACKIA ANTONY AMALAN 是 2024 是 Dr. A. SHANAWAZ 是 2016 是 Dr. AMIRDHA SHER GILL 是 2022 是 Dr. K. ARUN PRASATH 是 2021 是 S.Ida Blessy 7月22日 Mr.J Benny John 1月20日 使用人工网络预测聚合物复合材料的机械性能 Mr.J Ebenezer Samuel Daniel 7月17日 一种面向能源的制造布局设计和优化方法行业 先生 C Sankar 7月 14 日 镁基纳米复合材料 先生 S Mareeswaran 1月 13 日 使用声学 - 超声波测试评估树脂基复合材料的结构 先生 K.Solai Senthil Kumar 7月 18 日 天然纤维的物理化学特性和机械性能评估 先生 SP Saravanan 1月 18 日 天然纤维增强聚合物复合材料在机械工程中的应用特性 先生 P Arunkumar 1月 18 日 天然纤维及其复合材料在工程中的应用特性和机械性能 先生 R Susilkumar 1月 18 日 合成和用于微波和微电子应用的 (Ba TiO3)X-(CaCU3Ti4O12)1-X 纳米复合材料的特性 M. VARGHEESE 博士 否 是 P Ragupathy 先生 1 月 15 日 通过加湿脱湿 (HDH) 方法处理染色行业的废水 C Ramech 先生 1 月 15 日 带反射器的太阳能集热器的实验研究 L Ezhil Ruban 先生 7 月 21 日 微通道散热器研究 K Sudhakar 先生 7 月 21 日 利用激光纹理在 6061 铝合金上制造超疏水表面 L Antony Caroxin 先生 7 月 21 日 机械和石膏基隔墙板的热性能 Mr S Paramasivan 1 月 22 日 激光纹理铜表面润湿性研究以增强滴状冷凝 Mr P Madhan 1 月 22 日 使用高温传热流体的抛物线集热器的热性能 Mrs. Sivasankarai 1 月 18 日 在线电力系统应用中数据压缩的信号处理技术的开发 Mrs. S. Karthika 1 月 18 日 并联有源电力滤波器的控制策略的开发 Mr.L.Munia selvan 1 月 18 日 结合风电场的最优功率流的进化算法 Ms.S.Rajeswarai 7 月 22 日 植物叶片疾病检测智能技术的开发 Mrs.R.Madhumitha 1 月 22 日 基于智能电表数据的住宅用电行为大数据分析与可视化 Ms. S. Ledbin vini 1 月 22 日 从卫星图像中自动提取水体 Mr S Selvaprabhu 7 月 17 日 利用相变材料高温储存太阳能 Mr JS Heric 7 月 17 日 利用堆叠排列的电子元件三维冷却