Call: HORIZON-CL6-2024-CLIMATE-01 Topic: EU-China international cooperation on improving monitoring for better integrated climate and biodiversity approaches, using environmental and Earth observation Type of Action: HORIZON-RIA Acronym: BioClima GA Number: 101181408 Duration: 48 months Start Date: 01 Jan 2025 Project Cost: €4,999,437.50
AUGK 陆军元帅-隆美尔 - 32832 Augustdorf Gfm.-Rommel-Str. 1 09:00 14:00 1 兵营
为了确定第二次世界大战期间在科雷兹省梅马克镇被法国游击队和游击队射杀的德国士兵遗骸的潜在位置,科雷兹省退伍军人办公室和 VDK(负责维护德国战争坟墓的德国组织)将在 6 月底在科雷兹省长领导下组织一次探地雷达土壤分析活动。
CDHA 成立于 1974 年,旨在响应各类人士(其中大部分是从阿尔及利亚归国)的愿望,确保他们所持有的有关阿尔及利亚 1962 年前历史的文件得到保存。
参考文献 1] Klaus Greff 等人。“LSTM:搜索空间漫游。”IEEE 神经网络和学习系统学报,28 (2015): 2222-2232。 https://doi.org/10.1109/tnnls.2016.2582924。[2] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A.(2014)。更深入地了解卷积。2015 IEEE 计算机视觉和模式识别会议 (CVPR),1-9。 https://doi.org/10.1109/CVPR.2015.7298594。[3] Lee, J., Jun, S., Cho, Y., Lee, H., Kim, G., Seo, J., & Kim, N. (2017)。医学成像中的深度学习:概述。韩国放射学杂志,18,570 - 584。 https://doi.org/10.3348/kjr.2017.18.4.570。[4] Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., & Burnaev, E. (2020)。NAS-Bench-NLP:自然语言处理的神经架构搜索基准。IEEE Access,PP,1-1。https://doi.org/10.1109/access.2022.3169897。[5] Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W., & Boddeti, V. (2019)。用于图像分类的深度卷积神经网络的多目标进化设计。IEEE Transactions on Evolutionary Computation,25,277-291。https://doi.org/10.1109/TEVC.2020.3024708。[6] Zhang, T., Lei, C., Zhang, Z., Meng, X., & Chen, C. (2021)。AS-NAS:用于深度学习的具有强化进化算法的自适应可扩展神经架构搜索。IEEE 进化计算学报,25,830-841。 https://doi.org/10.1109/TEVC.2021.3061466。[7] Sun, Y., Sun, X., Fang, Y., Yen, G., & Liu, Y.(2020)。一种用于进化神经架构搜索算法性能预测器的新型训练协议。IEEE 进化计算学报,25,524-536。https://doi.org/10.1109/TEVC.2021.3055076。[8] Verma, M., Sinha, P., Goyal, K., Verma, A., & Susan, S. (2019)。一种用于爬山领域的神经架构搜索的新框架。2019 IEEE 第二届人工智能与知识工程国际会议 (AIKE),1-8。https://doi.org/10.1109/AIKE.2019.00009。[9] Zhang, H., Jin, Y., Cheng, R., & Hao, K. (2020)。通过采样训练和节点继承实现注意力卷积网络的有效进化搜索。IEEE
计算是技术专家的领域的日子早已一去不复返了。我们生活在一个计算技术(尤其是人工智能)渗透到我们日常生活的方方面面的世界,在各种情况下发挥着增强甚至取代人类决策的重要作用。人工智能技术可以通过处理错误模式来适应您孩子的理解水平;人工智能系统可以利用传感器输入的组合来选择和执行汽车的制动动作;具有人工智能功能的网络浏览器可以根据您过去对搜索的观察进行推理,以推荐新地点的新美食。人工智能的创新主要集中在“什么”和“如何”的问题上——例如,用于在网络搜索中查找模式的算法——没有充分关注可能的危害(例如隐私、偏见或操纵),也没有充分考虑这些系统运行的社会背景。在一定程度上,这是由科技行业的激励和力量推动的,在该行业中,更注重产品的重点往往会淹没对潜在危害和错误框架的更广泛的反思性担忧。 1 。但这种对“是什么”和“如何”的关注在很大程度上反映了计算机科学以工程和数学为重点的训练,这种训练强调工具的构建和计算概念的开发。由于这种严格的技术重点以及其在全球范围内的迅速应用,人工智能带来了一系列意想不到的社会技术问题,包括以种族或性别偏见的方式行事的算法、陷入延续不平等的反馈循环,或实现前所未有的行为监控,挑战自由民主社会的基本价值观。
为了展示其技术并挑战合成媒体因其近期滥用历史而获得的负面声誉,Alethea AI 制作了以下有关气候紧急情况的视频。这段讽刺性的合成视频是为 Apologia 项目制作的,该项目是由非营利组织 STEP 发起的气候变化宣传项目,令人不安地描述了 2032 年的世界状况。选择这一年份是因为科学家预测地球温度将达到相应的 +1.5°C 上限,这被广泛认为是不可挽回的。未来几周,人们将民主投票选出下一位应该为忽视气候紧急情况道歉的领导人。使用 Alethea AI 技术生成的所有合成视频都将带有显眼的免责声明,并加注水印以表明视频已被数字修改。
本简报中的胸部成像人工智能 (AI) 技术是独立的软件平台,使用机器或深度学习算法来分析或解释放射图像。一些技术允许将图像从医院传输到软件平台,该平台托管在 NHS 认可的安全数据中心。该软件使用专有算法分析胸部 DICOM(医学数字成像和通信)图像。图像分析可以直接发送回医院,以便使用医院系统(例如图片存档和通信系统 (PACS))和一些使用 DICOM 和 HL7 等协议的放射信息系统进行查看。一些技术还可能允许使用 Web 界面上传和查看图像和分析。
Wellbeing.ai 的解决方案在开发时高度重视隐私和合规性,确保用户数据得到保护和负责任的管理。该公司的方法旨在帮助人们更好地了解自己的情绪和心理状态,支持公司尽早发现和解决工作场所问题,并促进负责任的经济增长。
VHS是排除或消除狗心脏病的有用工具(Guglielmini等人。2009)。 当可将二极管造影不可行时,VHS也可以用作识别B2期退行性瓣膜疾病患者的替代品,这是启动心脏疗法的阈值(ITO 2022)。 补充,随着时间的推移,VHS的绝对VHS和变化已被证明可以预测多项研究的心力衰竭开始(Boswood等人。 2016,2020)。 VHS确实具有一定的可变性来源。 两项荧光镜研究的平均变化在心脏周期的收缩期和舒张期之间的平均变化约为0.3至0.4。 在呼吸周期的灵感和外向阶段之间也可以平均变化0.2椎骨(Olive etal。 2015)。 最后,人类的可变性研究表明,不同读取器的平均差异约为0.4至1.0椎骨(Hansson等人。 2005)。 最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人 2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2009)。当可将二极管造影不可行时,VHS也可以用作识别B2期退行性瓣膜疾病患者的替代品,这是启动心脏疗法的阈值(ITO 2022)。补充,随着时间的推移,VHS的绝对VHS和变化已被证明可以预测多项研究的心力衰竭开始(Boswood等人。2016,2020)。VHS确实具有一定的可变性来源。两项荧光镜研究的平均变化在心脏周期的收缩期和舒张期之间的平均变化约为0.3至0.4。在呼吸周期的灵感和外向阶段之间也可以平均变化0.2椎骨(Olive etal。2015)。最后,人类的可变性研究表明,不同读取器的平均差异约为0.4至1.0椎骨(Hansson等人。2005)。 最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人 2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2005)。最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2020,Li等。2020)。计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。2021)。此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。2017)。2021,Baisan&Vulpe 2022,Wiegel等。此外,可以根据狗品种,身体状况和心脏状况进行VHS测量的其他差异来源(Puccinelli等人。2022)。本研究的目的是评估使用简化的Sanchez方法的使用VHS算法的性能与使用Buchanan方法在三位董事会认证的兽医心脏病学家之间分配的1200个X光片相比,使用了1200个X射线照片。