人类大脑类器官,又称大脑类器官或早期的“迷你大脑”,是重现人类大脑发育各个方面的 3D 细胞模型。它们在促进我们对神经发育和神经系统疾病的理解方面显示出巨大的希望。然而,前所未有的体外模拟人类大脑发育和功能的能力也带来了复杂的伦理、法律和社会挑战。类器官智能 (OI) 描述了将此类类器官与人工智能相结合以建立基本记忆和学习形式的持续运动。本文讨论了有关大脑类器官和 OI 的科学地位和前景、意识的概念化和心脑关系、伦理和法律层面的关键问题,包括道德地位、人与动物嵌合体、知情同意和治理问题,例如监督和监管。需要一个平衡的框架来允许重要的研究,同时解决公众的看法和道德问题。科学家、伦理学家、政策制定者和公众之间的跨学科视角和积极参与可以为类器官技术提供负责任的转化途径。可能需要一个深思熟虑、积极主动的治理框架来确保这一有前途的领域在道德上负责任的进展。
摘要:使用靶向嵌合体(Protac)和分子胶水降解的靶向蛋白质降解(TPD)已成为一种强大的治疗方式,以消除从细胞中消除引起疾病的蛋白质。protac和分子胶降解器分别采用异性功能或单个小分子,以化学诱导靶蛋白与E3泛素连接酶的近端降低并通过蛋白酶体泛素化并降低特异性蛋白质。虽然TPD是扩展可毒蛋白质组的有吸引力的治疗策略,但人类基因组编码的> 600 E3连接酶中仅相对较少的E3连接酶已被小分子用于TPD应用。在这里,我们回顾了迄今为止已成功利用TPD的现有E3连接酶,并讨论了启用化学蛋白质组学的共价筛选策略,以发现新的E3连接酶招聘人员。我们还提供了数百种E3连接酶内反应性半胱氨酸的化学蛋白质图图,该图可能代表了可能在药理上询问的潜在可韧带位点,以发现其他E3连接酶招聘器。
人类大脑类器官,又称大脑类器官或早期的“微型大脑”,是重现人类大脑发育各个方面的 3D 细胞模型。它们在促进我们对神经发育和神经系统疾病的理解方面显示出巨大的潜力。然而,前所未有的体外模拟人类大脑发育和功能的能力也带来了复杂的伦理、法律和社会挑战。类器官智能 (OI) 描述了将此类类器官与人工智能相结合以建立基本记忆和学习形式的持续运动。本文讨论了有关大脑类器官和 OI 的科学地位和前景、意识的概念化和心脑关系、伦理和法律层面的关键问题,包括道德地位、人与动物嵌合体、知情同意以及监管等治理问题。需要一个平衡的框架来允许重要的研究,同时解决公众的看法和道德问题。科学家、伦理学家、政策制定者和公众之间的跨学科观点和积极参与可以为类器官技术提供负责任的转化途径。可能需要一个深思熟虑、积极主动的治理框架来确保这一有前景的领域取得合乎道德的负责任的进展。
背景我们正在寻找一位才华横溢的化学家加入我们的蛋白质降解中心(CPD),该中心由慈善捐赠资助。我们的使命是进步和部署靶向蛋白质降解(TPD)研究癌症生物学并发展突破性癌症治疗方法。CPD程序跨越了三个主要研究主题:靶向嵌合体(Protac),分子胶水降解器(MGD)和启用新型E3 E3泛素连接酶。高度协作中心与癌症药物发现中心(CCDD)有关,旨在利用ICR和我们的医院合作伙伴皇家马斯登(Royal Marsden)的广泛专业知识和能力,以开发从初始概念到诊所的蛋白质降解者,包括ICR内外。这是一个高度协作的多学科团队中的化学生物学地位。候选人将用于房屋生物学和药代动力学数据以及结构信息来设计新分子,并开发和执行合成路线以将其制成实验室。候选人将发展他们在有机化学方面的现有技能,并学习或增强其在应用药物化学和化学生物学方面的知识和经验。候选人还将接受培训以使用生化和基于细胞的测定方法测试项目化合物。
构建问题的ISSCR研究指南和临床翻译指南于2016年进行了最后修订。当时,已经认识到,与人类胚胎研究有关的伦理问题远远超出了人类胚胎来生成胚胎干细胞(ESC)的使用。2016年的指南认为与人类胚胎研究有关的更广泛的问题,包括针对人类胚胎的体外培养,干细胞 - 胚胎嵌合体和人类胚胎的基因组编辑的特定生成。2016年的指南还提出,所有与人类胚胎有关的研究都受到特殊过程的监督,名为Embryo Research Bercight(EMRO),并在此类过程中提供了可以允许,审查或禁止的拟议研究类别的指南。自2016年以来,与人类胚胎相关的研究的几个领域都取得了迅速的进展,包括长达14天的人类胚胎的扩展体外培养技术,创建基于干细胞的胚胎模型,这些模型反映了人类胚胎发育的不同阶段,以及来自干细胞的体外配子发生(IVG)。根据不断变化的科学,需要重新审视
摘要:靶蛋白降解 (TPD) 已成为药物发现领域的一种革命性方法,它利用细胞固有机制选择性地降解与疾病相关的蛋白质。纳米荧光素酶 (nLuc) 融合蛋白和 NanoBiT 技术提供了两个强大而灵敏的筛选平台,可监测 TPD 分子引起的蛋白质丰度的细微变化。尽管有这些优势,但人们还是担心由于标记系统上存在赖氨酸残基,可能会引入降解伪影,这促使人们开发替代工具。在本研究中,我们引入了 HiBiT-RR 和 nLuc K0(缺乏赖氨酸残基的变体),以减轻此类伪影。我们的研究结果表明,HiBiT-RR 与原始 HiBiT 保持了相似的灵敏度和结合亲和力。此外,nLuc WT 和 nLuc K0 构建体之间的比较揭示了某些 TPD 分子诱导的降解模式的变化,强调了选择合适的标记系统以确保研究蛋白质降解过程的实验结果可靠性的重要性。关键词:HiBiT、纳米荧光素酶、标记系统、靶向蛋白质降解 (TPD)、蛋白水解靶向嵌合体 (PROTAC)、高通量筛选
针对包括癌症在内的各种疾病的广义治疗策略是耗尽或灭活有害蛋白质靶标。各种形式的蛋白质或基因沉默分子,例如,小分子抑制剂,RNA干扰(RNAI)和microRNA(miRNA)已用于可药物测定靶标。在过去几年中,已开发出靶向蛋白质降解(TPD)方法来直接降解候选蛋白质。在TPD方法中,靶向嵌合体(Protac)的蛋白水解已成为通过泛素 - 蛋白酶体系统选择性消除蛋白质的最有希望的方法之一。protacs以外,具有潜在治疗用途的TPD方法包括内部介导的蛋白质敲低和三方基序21(TRIM-21)介导的Trim-Awa。在这篇综述中,总结了蛋白质敲低的方法,它们的作用方式以及它们比常规基因敲低方法的优势。在癌症中,与疾病相关的蛋白质功能通常通过特定的翻译后修饰(PTM)执行。 在靶蛋白的PTM形式的直接敲低中突出了修剪的作用。 此外,还讨论了各种疾病中TPD方法的应用挑战和前瞻性临床使用。在癌症中,与疾病相关的蛋白质功能通常通过特定的翻译后修饰(PTM)执行。在靶蛋白的PTM形式的直接敲低中突出了修剪的作用。此外,还讨论了各种疾病中TPD方法的应用挑战和前瞻性临床使用。
抗癌药物耐药性是持续成功治疗恶性肿瘤的主要障碍。目前发现,抑制癌症进展中指示的蛋白质的疗法由于获得性耐药性而失效,而获得性耐药性通常是由突变或过度表达的蛋白质靶标引起的。通过劫持细胞泛素蛋白酶体蛋白质降解机制,蛋白水解靶向嵌合体 (PROTAC) 为癌症治疗提供了一种具有各种潜在优势的替代治疗方式。过去 5 年,已经开发出针对多种已知癌症靶标的 PROTAC,这为以前无法治疗的恶性肿瘤患者提供了新的缓解选择,并为下一代化合物奠定了基础。PROTAC 的一个显着优势是,它们可以克服传统靶向疗法的一些耐药机制,这得到了最近许多研究的证据支持。最近,一些团体已经开始研究使用 PROTAC 成功降解导致癌症对一线治疗产生耐药性的突变靶标。在这篇评论中,我们重点分析了针对癌症抗性的 PROTAC 的发展以及在寻找新的成功疗法时赋予它的目标。
摘要:线粒体是细胞能量代谢的中心。它包含自己的基因组,即mtDNA,这是原核共生祖先的遗物。在植物中,线粒体的遗传信息影响重要的农学性状,包括生育力、植物活力、叶绿体功能和交叉兼容性。植物mtDNA具有显着的特征:它比其他真核生物的mtDNA大得多,并且结构进化非常迅速。这是因为重组活动会产生替代的mtDNA配置,这是促进mtDNA快速进化的重要遗传多样性库。另一方面,异位重组的高发生率导致mtDNA不稳定和基因嵌合体的表达,具有潜在的有害影响。与基因组的结构可塑性相反,在大多数植物物种中,mtDNA编码序列进化非常缓慢,即使基因组的组织高度可变。修复机制可能是造成如此低突变率的原因,特别是通过同源重组进行修复。本文我们回顾了植物细胞器基因组的一些特征以及在植物线粒体中发现的修复途径。我们进一步讨论了同源重组如何参与植物线粒体 DNA 的进化。
摘要:涉及蛋白水解靶向嵌合体(Protac)最近已成为药物发现景观中有希望的技术。对雄激素受体(AR)作为一种新的抗攻击性癌症策略的降解的极大兴趣导致了几篇论文,重点是针对AR的Protac。这项研究探讨了一些有机工具中一些在文献中经常报告的格式中AR降解数据中提取药物设计信息的潜力。在设置了具有一致的AR降解值的92个Protac的数据集后,我们采用了Bemis -Murcko方法进行分类。所产生的簇在结构 - 降级关系方面没有信息。随后,我们进行了降解悬崖分析,并确定了一些关键方面为活动提供积极贡献,以及将这种方法应用于Protacs时的一些方法学限制。还研究了接头结构降解关系。然后,我们构建并表征了三元络合物,以验证先前的结果。最后,我们实施了机器学习分类模型,并表明可以通过简单的与透气性相关的2D分子描述符预测基于VHL但基于CRBN的ProTAC的AR降解。
