1. Araldi, RP 等人,成簇的规律间隔的短回文重复序列 (CRISPR/Cas) 工具的医学应用:全面概述。基因,2020 年。745:第 144636 页。2. Frangoul, H.、TW Ho 和 S. Corbacioglu,CRISPR-Cas9 基因编辑用于镰状细胞病和β-地中海贫血。回复。N Engl J Med,2021 年。384 (23):第 e91 页。3. Groenen, PMA 等人,结核分枝杆菌直接重复簇中 DNA 多态性的性质 - 一种新型分型方法在菌株区分中的应用。分子微生物学,1993 年。10 (5):第 1057-1065 页。 4. Ishino, Y. 等人,大肠杆菌中负责碱性磷酸酶同工酶转化的 Iap 基因的核苷酸序列及其基因产物的鉴定。细菌学杂志,1987 年。169 (12):第 5429-5433 页。5. Chen, JS 和 JA Doudna,Cas9 及其 CRISPR 同事的化学反应。自然评论化学,2017 年。1 (10)。6. Doudna, JA 和 E. Charpentier,使用 CRISPR-Cas9 进行基因组工程的新前沿。科学,2014 年。346 (6213):第 1077-+ 页。7. Whinn, KS 等人,核酸酶死亡 Cas9 是 DNA 复制的可编程障碍。科学报告,2019 年。9 月。8. Tsai, SQ 等人,GUIDE-seq 可对 CRISPR-Cas 核酸酶的脱靶切割进行全基因组分析。自然生物技术,2015 年。33 (2):第 187-197 页。9. Wang, Y. 等人,CRISPR 系统的特异性分析揭示了大大增强的脱靶基因编辑。科学报告,2020 年。10 (1)。10. Zuccaro, MV 等人,Cas9 切割人类胚胎后去除等位基因特异性染色体。细胞,2020 年。183 (6):第 1650-+ 页。11. Aschenbrenner, S. 等人,将 Cas9 与人工抑制结构域耦合可增强 CRISPR-Cas9 靶向特异性。 Science Advances,2020 年。6 (6)。12. Bondy-Denomy, J. 等人,抗 CRISPR 蛋白抑制 CRISPR-Cas 的多种机制。Nature,2015 年。526 (7571):第 136-9 页。13. Khajanchi, N. 和 K. Saha,通过小分子调控控制 CRISPR 进行体细胞基因组编辑。Mol Ther,2022 年。30 (1):第 17-31 页。14. Han, J. 等人,对小分子药物的超敏反应。Front Immunol,2022 年。13:第 1016730 页。15. Pettersson, M. 和 CM Crews,蛋白水解靶向嵌合体 (PROTAC) - 过去、现在和未来。 Drug Discov Today Technol,2019. 31:第 15-27 页。16. Bondeson, DP 和 CM Crews,小分子靶向蛋白质降解。Annual Review of Pharmacology and Toxicology,第 57 卷,2017 年。57:第 107-123 页。17. Li, R.,等人,蛋白水解靶向嵌合体 (PROTAC) 在癌症治疗中的应用:现在和未来。Molecules,2022 年。27 (24)。18. Farasat, I. 和 HM Salis,用于合理设计基因组编辑和基因调控的 CRISPR/Cas9 活性的生物物理模型。PLoS Comput Biol,2016 年。12 (1):第 e1004724 页。
蛋白水解靶向嵌合体 (PROTAC) 是一种新兴的癌症靶向治疗方法,但由于细胞靶向性和穿透性较差以及体内不稳定性,PROTAC 的广泛临床应用受到限制。为了克服这些问题并提高 PROTAC 药物的体内疗效,开发了基于微流控液滴的电穿孔 (µDES) 作为一种新型细胞外囊泡 (EVs) 转染系统,可实现高效的 PROTAC 装载和体内有效递送。我们之前开发的 YX968 PROTAC 药物已显示出对 HDAC3 和 8 的选择性降解,通过双重降解有效抑制乳腺肿瘤细胞系(包括 MDA-MB-231 三阴性乳腺癌 (TNBC) 系)的生长,而不会引起整体组蛋白高乙酰化。在本研究中,我们证明基于 µDES 的 PROTAC 在 EVs 中的装载显着增强了 PROTAC 药物在 TNBC 乳腺肿瘤小鼠模型中的体内治疗功能。 NSG 小鼠已建立 MDA-MB-231 肿瘤,并通过腹膜内注射 EVs 进行肿瘤抑制研究,结果显示 HDAC 3 和 8 降解效率和肿瘤抑制率明显高于仅使用 PROTAC 的组。收集肝脏、脾脏、肾脏、肺脏、心脏和脑进行安全性测试,结果显示毒性有所改善。PROTAC 药物的 EV 递送提高了药物在体内的稳定性和生物利用度、可运输性和药物靶向能力,填补了 PROTAC 治疗功能在体内和临床转化中当前发展的重要空白。这种基于 EV 的新型药物转染和递送策略可应用于各种疗法,以增强体内递送、功效和安全性。
小分子降解者,例如靶向嵌合体(Protac)或分子胶的蛋白水解是药物开发的新方式,也是靶验证的重要工具。两种模态都通过两个独立但连接的配体(Protac)或通过改变E3结合表面以募集Neo-Substrate(Molecular Glues)的小分子的结合来募集E3泛素连接酶(POI)(POI)(POI)。如果适当地进行了优化,则两种方式都会导致POI降解。由于诱导的多步降解过程的复杂性,降解器评估的控制至关重要,并且在文献中通常使用。但是,到目前为止,尚未发布这些对照化合物及其适当用途的细胞效率的比较研究和评估。此外,机制的高度多样性需要各种小分子控制,以确保对研究系统的适当抑制,同时保持潜在的细胞毒性和对细胞途径的无意影响。在这里,我们仔细检查了一组泛素途径抑制剂,并评估了它们在CRBN和VHL介导的POI降解途径中的效力和效用。我们使用hibit系统来测量用对照化合物处理后的目标拯救水平。此外,使用多重高含量测定法研究了细胞健康。该测定面板使我们能够确定对照实验的无毒有效浓度,并在没有细胞毒性的情况下进行救援实验,这对泛素依赖性依赖性和独立途径的靶标降解产生了深远的影响。
蛋白水解靶向嵌合体 (PROTAC) 是异双功能分子,由两个配体组成;一个与 E3 泛素连接酶结合的“锚”和一个与目标蛋白结合的“弹头”,两者通过化学接头连接。PROTAC 靶向降解蛋白质已成为一种新的敲除一系列蛋白质的方式,首批药物目前已进入临床评估阶段。越来越明显的是,接头的长度和组成对 PROTAC 的物理化学性质和生物活性起着关键作用。虽然接头设计在历史上受到的关注有限,但 PROTAC 领域正在迅速发展,目前正在经历从易于合成的烷基和聚乙二醇到更复杂的功能接头的重要转变。这有望解锁大量具有增强生物活性的新型 PROTAC 药物,用于治疗干预。在这里,作者及时概述了已发表文献中的各种接头类别,以及它们的基本设计原则和对相关 PROTAC 的性质和生物活性的总体影响。最后,作者对 PROTAC 组装的当前策略进行了批判性分析。作者强调了与接头设计和选择相关的传统“反复试验”方法的重要局限性,并提出了未来的潜在途径,以进一步指导合理的接头设计并加速优化 PROTAC 的识别。特别是,作者认为计算和结构方法的进步将在更好地理解 PROTAC 三元复合物的结构和动力学方面发挥重要作用,并且对于解决与 PROTAC 设计相关的当前知识空白至关重要。
3.09.1 简介 204 3.09.1.1 Leloir 与非 Leloir GT 及其供体底物 204 3.09.1.2 基于序列的 CAZy 家族和 GT 的结构分类 205 3.09.1.3 GT 的机制 205 3.09.1.3.1 反转 GT 机制 205 3.09.1.3.2 保留 GT 机制 206 3.09.2 GT 活性的抑制 208 3.09.2.1 GT 抑制剂的类型 208 3.09.2.1.1 GT 底物类似物和过渡态类似物 208 3.09.2.1.2 GT 的糖基化抑制剂 211 3.09.2.1.3 天然产物作为 GT 抑制剂 212 3.09.2.1.4 结构多样的合成小分子作为 GT 抑制剂 214 3.09.2.2 识别 GT 抑制剂的高通量筛选策略 215 3.09.2.2.1 通过核苷酸释放测量 GT 活性的偶联酶测定 215 3.09.2.2.2 基于碳水化合物微阵列的 GT 测定 216 3.09.2.2.3 基于荧光偏振的 GT 测定 217 3.09.2.2.4 使用荧光团标记的糖供体直接荧光测定 GT 活性 219 3.09.2.2.5 糖苷酶依赖性荧光偶联 GT 测定 219 3.09.3 GT 活性工程 221 3.09.3.1 使用合理的蛋白质设计修改 GT 活性 221 3.09.3.1.1 GT 的定向诱变 221 3.09.3.1.2 域交换生成 GT 嵌合体 222 3.09.3.2 高通量筛选策略及其在发现和设计 GT 活性中的应用 225 3.09.3.2.1 用于天然产物 GT 定向进化的基于平板的荧光猝灭策略 225 3.09.3.2.2 通过 FACS 进行细胞内荧光捕获以筛选 GT 活性 225 3.09.3.2.3 在基于平板和颗粒的体外试验以及基于 FACS 的体内试验中利用聚糖结合蛋白筛选 GT 活性 227 3.09.4 结论 228 参考文献 228
摘要:Ph+ ALL 是一种预后不良的白血病亚型,由 BCR-ABL1 致癌基因驱动,即 p190- 或 p210-BCR/ABL 亚型,比例为 70:30。酪氨酸激酶抑制剂 (TKI) 是治疗 Ph+ ALL 的首选药物。与标准化疗相结合,TKI 显著改善了 Ph+ ALL 的疗效,尤其是如果这种治疗后进行骨髓移植。然而,TKI 的耐药性发展频率很高,导致白血病复发,总生存期不到 5 年。因此,需要新的疗法来治疗复发/TKI 耐药的 Ph+ ALL。我们已经证明,细胞周期调节激酶 CDK6 的表达,而不是高度相关的 CDK4 激酶的表达,是 Ph+ ALL 细胞增殖和存活所必需的。比较临床批准的双重 CDK4/6 抑制剂 palbociclib 与 CDK6 沉默治疗对白血病的抑制作用,结果显示后者的治疗效果明显更好,这可能反映了对 CDK6 激酶非依赖性效应的抑制。因此,我们开发了 CDK4/6 靶向蛋白水解靶向嵌合体 (PROTAC),它们优先降解 CDK6 而不是 CDK4。一种称为 PROTAC YX-2-107 的化合物通过募集 Cereblon 泛素连接酶来降解 CDK6,它显著抑制了注射了新生或 TKI 耐药 Ph+ ALL 的小鼠的白血病负担。PROTAC YX-2-107 的效果与 palbociclib 相当或优于 palbociclib。 CDK6 选择性 PROTAC 的开发代表了一种有效的策略,可利用 Ph+ ALL 细胞的“CDK6 依赖性”,同时保留大量依赖 CDK6 和 CDK6 生存的正常造血祖细胞。与其他药物联合使用时,CDK6 选择性 PROTAC 可能是 Ph+ ALL 和其他 CDK6 依赖性血液系统恶性肿瘤无化疗治疗方案的重要组成部分。
胶质母细胞瘤是成人脑癌中最具致命性和侵袭性的癌症,具有很强的转移能力,不同肿瘤类型之间存在分子差异。这些差异以及其他因素导致当前疗法的成功率低,常常导致肿瘤复发。当前疗法具有高度侵袭性和毒性,导致死亡率高,患者存活率低,从而表明开发新型靶向疗法治疗胶质母细胞瘤的重要性。化疗和药物输送机制面临的主要障碍是无法穿过血脑屏障,然而,适体已显示出克服这一障碍的希望,可以有效地将药物有效载荷输送到癌细胞。适体是单链寡核苷酸序列,与其他靶向疗法相比,作为药物输送载体具有许多理想的特性,包括对靶标的高结合特异性和灵敏度、最小的批次差异、缺乏免疫原性和易于修改。虽然很少有研究人员成功生成能够在穿过血脑屏障后引发胶质母细胞瘤治疗反应的适体结合物,但根据初步研究结果,许多适体结合物都显示出了良好的前景。此类结合物包括向适体添加化疗药物、功能化纳米颗粒复合物或小干扰 RNA 嵌合体。本文将重点介绍适体为何是靶向治疗的理想候选物、化疗和药物递送机制面临的困难,以及过去 6 年来各种适体结合物的总体更新,这些适体结合物有望穿过血脑屏障治疗胶质母细胞瘤。
图1。BCL-XL TR-FRET分析套件原理的例证。含有Terbium标记的供体,染料标记的受体,BCL-XL,肽配体和抑制剂的样品孵育180分钟。抗His标记的供体与他标记的BCl-XL结合。Bcl-XL肽配体用生物素标记,该配体允许染料标记的链霉亲和蛋白受体与Bcl-XL肽配体结合。这导致了从Terbium到受体的Terbium激发后的能量转移。使用能够TR-FRET读数的荧光板读取器测量荧光强度,而620-665 nm的增加直接对应于Bcl-XL与Bcl-XL肽配体的相互作用。背景BCl-XL(B-Cell淋巴瘤 - 巨大),也称为BCl2L1,是Bcl-2蛋白质家族的成员,参与调节细胞凋亡。bcl-XL是Bcl-2蛋白的一部分,即被认为是促生物蛋白的蛋白,就像与其效应蛋白结合时,它们会抑制细胞凋亡。bcl-XL在线粒体膜的渗透性中起作用,允许细胞色素释放C。除了其在凋亡中的作用外,它还参与了神经生长,突触可塑性和神经保护作用。顾名思义,它们在B细胞淋巴瘤中的水平异常,可能有助于该疾病的进展。BCl-XL过表达在大约80%的淋巴瘤中发现,因此在癌症治疗中是一个有吸引力的靶标。最近,它通过控制免疫细胞,成纤维细胞和其他细胞类型的凋亡率来确定为自身免疫性疾病和衰老的参与者。已经探索了几种治疗方法,靶向BCl-XL,范围从小抑制剂(例如Navitoclax)到Protac(靶向嵌合体)。Protac 753b,一种针对Bcl-XL/BCl2对VHL(Von Hippel-Lindau)的Protac,已显示出可以增加化学疗法的影响,同时避免脱靶对血小板的脱靶作用,因为这些效果不表达VHL。小型抑制剂的进步也正在进行中,并有望为肿瘤学患者带来好处。
摘要:尽管最近取得了进展,但 CRISPR/Cas9 在多年生植物中的应用仍有许多障碍需要克服。我们之前在苹果和梨中使用 CRISPR/Cas9 的结果表明,在编辑赋予白化表型的八氢番茄红素去饱和酶 (PDS) 基因后,经常产生表型和基因型嵌合体。因此,我们的第一个目标是确定从原代转基因植物 (T0) 的叶子中添加不定芽再生步骤是否可以减少嵌合体。在从杂色 T0 系再生的数百个不定芽中,89% 是同质白化。此外,对其中 12 个再生系(RT0 为“再生 T0”系)的靶区序列的分析表明,99% 的 RT0 等位基因预测会产生截短的靶蛋白,67% 的 RT0 植物的异质性编辑谱比 T0 少。碱基编辑器是 CRISPR/Cas9 衍生的新型基因组编辑工具,可进行精确的核苷酸替换而不会造成双链断裂。因此,我们的第二个目标是证明使用两个易于评分的基因在苹果和梨中进行 CRISPR/Cas9 碱基编辑的可行性:乙酰乳酸合酶 - ALS(赋予对氯磺隆的抗性)和 PDS。MdU3 和 MdU6 启动子下的两个引导 RNA 被偶联到含有与切口酶 Cas9 融合的胞苷脱氨酶的胞苷碱基编辑器中。使用这个载体;我们在目标基因中诱导了 C 到 T 的 DNA 替换;导致氨基酸序列发生离散变异并产生新的等位基因。通过共同编辑 ALS 和 PDS 基因;我们成功获得了抗氯磺隆和白化梨系。总体而言;我们的工作表明,再生步骤可以有效减少初始嵌合现象,并且可以与碱基编辑的应用相结合,在多年生植物中创建准确的基因组编辑。
CONSPECTUS:现代药物发现工作中最大的瓶颈之一是解决不可用药的蛋白质组。目前,超过 85% 的蛋白质组仍然被认为是不可用药的,因为大多数蛋白质缺乏明确的结合位点,而这些位点无法用小分子进行功能性靶向。解决不可用药的蛋白质组需要创新方法来发现针对不可用药蛋白质的配体,以及开发新的治疗方法来功能性地操纵感兴趣的蛋白质。化学蛋白质组学平台,特别是基于活性的蛋白质分析 (ABPP),已经出现,通过使用基于反应性的化学探针和先进的基于定量质谱的蛋白质组学方法来发现“可配体热点”或可以用小分子配体靶向的蛋白质组范围的位点,以解决不可用药的蛋白质组问题。随后,这些位点可通过共价配体进行药理靶向,以快速发现针对目标治疗性蛋白质的功能性或非功能性结合剂。化学蛋白质组学方法还揭示了对配体能力的独特见解,例如发现独特的变构位点或蛋白质的内在无序区域,这些区域可通过药理学和选择性靶向,以实现生物调节和治疗益处。化学蛋白质组学平台还通过发现几种新的共价 E3 连接酶募集剂,扩大了针对靶向蛋白质降解和蛋白水解靶向嵌合体 (PROTAC) 的新兴治疗模式的范围。展望未来,化学蛋白质组学方法无疑将对进一步扩展现有研究产生重大影响,包括蛋白质组范围的配体可定位性、针对高价值非药物治疗靶点的靶向配体发现、进一步扩大靶向蛋白质降解平台的范围、发现能够独特调节蛋白质功能的新分子胶支架,以及最令人兴奋的是开发下一代小分子诱导邻近治疗模式,这些模式超越了降解。随着化学生物学成为药物发现越来越重要的驱动力,该领域将迎来激动人心的一天,化学蛋白质组学方法必将成为开发下一代疗法的支柱。■ 主要参考文献
