随着体积自旋转移矩 (STT) [11,12] 和自旋轨道矩 (SOT) [13–16] 机制的进步,电流诱导畴壁 (DW) 运动 (CIDWM) 已从平面磁性 [8] 演变为合成反铁磁 (SAF) [9,10] 赛道。在铁磁体/重金属 (HM) 界面处存在破缺的反演对称性时,自旋轨道耦合产生手性自旋矩,[17] 驱动 Néel 畴壁运动,具有强垂直磁各向异性 (PMA) 的薄膜,由铁磁体/HM 界面处的 Dzyaloshinskii-Moriya 相互作用 (DMI) 稳定,[18] 可以沿电流方向以高速移动 [12,15,19],既可以沿直线赛道,也可以沿曲线赛道移动。 [20] 据报道,SAF 赛道中存在一种更高效的 DW 运动,该赛道由两个垂直磁化的铁磁子赛道组成,它们通过超薄钌层反铁磁耦合。[10] SAF 结构中的巨大交换耦合扭矩 (ECT) 提供了一种额外的主导驱动机制,允许将 DW 传播速度提高到 ≈ 1000 ms − 1 以上。[10,21] 稀土-过渡金属合金中的 ECT 在亚铁磁合金的角动量补偿温度下进一步最大化。[22,23] 最近,在某些磁绝缘体中也发现了高效的 CIDWM。[24]
Chun Wang,C,D Gaoshuai Wei,C,D Tianxiao nie,A,E, * Weisheng Zhao,A,E,E, * Jungang Miao,B Yutong Li,C,D Li Wang,C, *和Xiaojun Wu B,中国北京,北京大学,中国中国北部中国北部,中国北京,北京,中国C中国科学学院,北京国家凝集物理学实验室,北京,北京,中国科学院北京中国青岛福汉国家光电实验室,华盛科学技术大学,中国
在同一反应堆中进行多步反应的两个或多个催化剂同时进行串联催化,可以使(BIO)药物和纤维制造能够变得更加可持续。在此报告,在合成的共价有机框架胶囊中,金属纳米颗粒和生物催化系统的共晶型化合物COFCAP-2的作用像是人工细胞,因为该细胞在300-400 nm cavities/egress/egress/egress/egress中被捕获在300-400 nm nm cavities in cacy/egress中。2 nm窗口。首先将COFCAP-2反应器涂在电极表面上,然后用Dinitrogen作为原料来制备十一例同期胺。胺在水中的环境条件下以> 99%的对映体过量量制备,包括药物中间体和活性药物成分。重要的是,COFCAP-2系统通过保留性能进行了15次回收,解决了酶的相对不稳定性和较差的回收能力,这阻碍了其广泛的实施,从而有效,低废物的化学物质和(生物)药物。
基于运动的分层方程(HEOM)计算,我们从理论上研究了连接到两个储层的三角形三量子点(TTQD)环的相应控制。我们最初通过添加偏置电压并进一步调节量子点之间的耦合强度来证明,偏置引起的手性电流将通过顺时针向逆时针方向转换,并触发前所未有的有效霍尔角。转换非常快速,相应的特征时间为80-200 ps。另外,通过添加磁性弹力来补偿原始系统中的手性电流,我们阐明了施加的磁性环与浆果相之间的关系,该相位可以直接测量手性电流并揭示磁电耦合关系。
手性D波超导性。手性超导体由超导顺序参数和相关拓扑保护的手性手性边缘模式设置的有限的Chern号码。然而,边缘模式产生的手性边缘电流和轨道角动量(OAM)并非受到拓扑保护,因此需要另一种更健壮的实验探测器,以促进手掌D-波超导体的实验性验证。我们最近显示了手性D-波超导体中四倍定量的无芯涡旋(CVS)的外观,由封闭的域壁组成,该壁壁上装饰了八个分数涡流,并产生了Chern数量,手柄和超管配对对称性对称对称性的烟熏枪标志Holmvall和A. M. Black-Schaffer,物理学。修订版b 108,L100506(2023)]。特别是,CV自发地破坏了轴向对称性的平行性手性和涡度,并直接出现在局部密度(LDOS)中,可通过扫描隧道光谱(STS)测量。In this paper, we first demonstrate a strong tunability of the CV size and shape directly reflected in the LDOS and then show that the LDOS signature is robust in the presence of regular Abrikosov vortices, strong confinement, system and normal-state anisotropy, different Fermi surfaces (FSs), nondegenerate order parameters, and even nonmagnetic impurities.总而言之,我们的论文将CVS视为手性D波超导性的可调且可靠的标志。
1个纳米技术小组,用户 - 纳米纳布,萨拉曼卡大学,萨拉曼卡大学,塞拉梅尔广场,特林里奇建筑,37008,西班牙萨拉曼卡2加州纳米科学和纳米技术研究所,CSIC和BISTI,BISTI,BISTI,BERCUS UAB,UAB,BELLATERRA,BELLATERRA,0893 BATITA,SPINES,FITIS,FINE,弗里,FINE,393 BARCEN,FINE,FINE,FINE,FINE,FINE,林库,FINE,FINE,FINE,3。 24210-346 NITITIROI RJ,巴西4 GISC,DeFísicade Carteres,Cromputense大学,28040,西班牙马德里,55040,加利福尼亚州伯克利大学,加利福尼亚大学94720,美国64720,美国6材料科学司,伯克利国家实验室,伯克利材料机构,美国64777777777770年7月7日科学,1-1 Namiki,Tsukuba,305-0044,日本8国际材料纳米级核库中心,国家材料科学研究所,1-1 Namiki,Tsukub,Tsukub 305-0044,日本9.日本9. Avançats,08010巴塞罗那,西班牙11号Minho和Porto University(CF-HUM-UP),Braga,Braga,葡萄牙12 InstitutodeFísicaInstitutodeFísica,联邦联邦政府Rio De Janeiro,C.P。68528,21941-972里约热内卢RJ,巴西
我们研究了通过正常超导体 (NS) 结的传输,该结由具有螺旋边缘态的量子自旋霍尔 (QSH) 系统和具有手性马约拉纳边缘模式的二维 (2D) 手性拓扑超导体 (TSC) 制成。我们采用二维扩展四带模型,用于磁场 (塞曼) 中受 s 波超导影响的 HgTe 基量子阱。我们使用 Bogoliubov-de Gennes 散射形式表明,该结构提供了 2D TSC 的显著传输信号。作为样品宽度 (或费米能量) 的函数,电导共振经历 2 e 2 / h (非平凡相) 和 4 e 2 / h 平台期 (平凡相) 的序列,随着样品宽度变大,它们落入非零陈数 (2D 极限) 的区域内。这些特征是 QSH 效应和 TSC 拓扑性质的体现。
近一个世纪以来出现了大量关于烯烃Z/E异构化的报道,但其中绝大多数仍然局限于二、三取代烯烃的异构化,四取代烯烃的立体特定Z/E异构化仍是一个尚未开发的领域,因此缺乏轴手性烯烃的立体发散合成。本文我们报道了通过不对称烯丙基取代异构化对四取代烯烃类似物进行对映选择性合成,然后通过三重态能量转移光催化对其进行Z/E异构化。在这方面,可以有效实现轴手性N-乙烯基喹啉酮的立体发散合成。机理研究表明,苄基自由基的生成和分布是保持轴手性化合物对映选择性的两个关键因素。
编辑器:F。Gelis QCD与字符串模型之间的关系是探索Quarks之间相互作用潜力的宝贵观点。在这项研究中,我们研究了与加速观察者所经历的临床相关的手性对称性的恢复。利用Schwinger模型,我们分析了Quark-Antiquarks之间的弦或染色体孔管的临界点,而夸克之间的分离增加。在这项研究中,确定Quark-Antiquark染色器式孔管或弦弦断裂的临界距离为𝑟= 1。294±0。040 FM。与此临界点相对应的加速度和未温度的温度表示系统的手性对称性从断裂状态到恢复状态的过渡。我们对临界加速度的估计值(𝑎=1。14×10 34 cm/s 2)和未温度(𝑇= 0。038 GEV)与以前的研究保持一致。此分析在夸克相互作用的背景下,阐明了手性对称性恢复,效果的效果以及弦乐或铬发射器的破裂之间的相互作用。
一种制备具有手性形态的稳定无机纳米粒子的稳健且可重复的方法可能是这些材料实际应用的关键。本文介绍了一种制备四重扭曲金纳米棒的优化手性生长方法,其中使用氨基酸半胱氨酸作为不对称诱导剂。在半胱氨酸作为手性诱导剂、抗坏血酸作为还原剂的情况下,反复还原 HAuCl 4 后发现在单晶纳米棒表面形成了四个倾斜的脊。通过对晶体结构进行详细的电子显微镜分析,提出不对称性是由于初始纳米棒上形成了突起(倾斜脊)形式的手性面,最终导致扭曲的形状。半胱氨酸的作用是协助对映选择性面演化,密度泛函理论模拟的表面能支持了这一观点,表面能随着手性分子的吸附而改变。因此,R 型和 S 型手性结构(小面、梯田或扭结)的发展将不相等,从而消除了 Au NR 的镜像对称性,进而导致具有高等离子体光学活性的明显手性形态。