。CC-BY-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 12 日发布。;https://doi.org/10.1101/2025.01.09.632202 doi:bioRxiv 预印本
1 香港中文大学医学院生物医学学院发育及再生生物学项目,香港沙田,香港;2 福建医科大学医学科技与工程学院,福建,中国;3 香港中文大学医学院生物医学学院癌症生物学及实验治疗学项目,香港沙田,中国;4 广州生物医药与健康研究院广州再生医学与健康生物园实验室,广州,中国;5 哈德逊医学研究所生殖健康中心生殖干细胞生物学实验室,墨尔本,澳大利亚;6 香港中文大学化学病理学系,香港新界沙田,中国
* 通讯作者。leonid@mit.edu,zechner@mpi-cbg.de,ashansen@mit.edu。作者贡献:ASH 构思并启动了该项目。HBB、MG、SGH、LM、CZ、ASH 设计了该项目。ASH 进行了基因组编辑并生成了细胞系。GMD 克隆了质粒。MG、AJ、CC 和 ASH 表征并验证了细胞系。THSH 进行了 Micro-C。CC 进行了 ChIP-Seq。MG、AJ 和 HBB 使用来自 ASH 的输入优化了成像实验。MG 和 AJ 收集了图像数据。MG 和 AJ 进行了对照实验并表征了 AID 细胞系。HBB 开发了图像处理管道 CNN,并使用来自 ASH、SGH、MG 和 AJ 的输入分析了图像数据。HBB 使用来自 SGH 和 LM 的输入进行了聚合物模拟。MG、AJ、HBB 和 ASH 注释了轨迹数据。 SGH 和 CZ 在 HBB、LM 和 ASH 的帮助下设计了 BILD。SGH 开发并测试了 BILD,将 BILD 应用于轨迹数据,并在 HBB、LM、ASH 和 CZ 的帮助下开发了 MSD 分析。HBB 和 SGH 分析了聚合物模拟。ASH、LM 和 CZ 负责监督该项目。HBB、MG、SGH、AJ 和 ASH 起草了手稿和图表。所有作者都编辑了手稿和图表。+ 现地址:Illumina Inc.;美国加利福尼亚州圣地亚哥 92122 † 这些作者对这项工作的贡献相同,可以先列出自己的名字。
转录因子 SRY 相关 HMG 盒 9 (Sox9) 对软骨形成至关重要。SOX9 内部和周围的突变会导致以骨骼畸形为特征的软骨发育不良 (CD)。尽管 Sox9 在此背景下的功能已被充分研究,但调节软骨细胞中 Sox9 表达的机制仍有待阐明。在这里,我们使用全基因组分析来识别位于负责 CD 的近端断点簇中的 2 个 Sox9 增强子。E308(位于 5′ 上游 308 kb)和 E160(位于 5′ 上游 160 kb)的增强子活性与 Sox9 表达水平相关,并且两种增强子在体外均表现出协同作用。虽然小鼠中的单个缺失没有明显影响,但同时缺失 E308 和 E160 会导致侏儒表型,同时软骨细胞中 Sox9 表达减少。此外,在 E308/E160 缺失小鼠中,肢体芽间充质细胞的骨形态发生蛋白 2 依赖性软骨细胞分化严重减弱。最后,我们发现在 E308/E160 缺失小鼠中,Sox9 基因上游的开放染色质区域被重组,以部分补偿 E308 和 E160 的缺失。总之,我们的研究结果揭示了软骨细胞中 Sox9 基因调控的机制,这可能有助于我们理解骨骼疾病的病理生理学。
光的本质或有时是显微镜的设计,在图像采集过程中引入了偏见和系统错误。取决于分析的类型,因此有必要通过产生与不同荧光团同时标记的探针和/或产生颜色交换的探针(两组交换荧光团的探针)来评估诸如色差等误差(请参阅第3.4.5节)。这比简单地对安装介质中的荧光标记的珠子进行想象更准确,因为对照和实际实验环境之间的光路相同。在基于划痕的探针的情况下,可以用不同的荧光团标记一个探针的1.2-1.7 kb片段,即在6-碎片场景和3色鱼实验中,一种碎片1和4的颜色,另一种用于片段2和5的颜色,另一种颜色再次用于片段3和6。对于寡头,可以使用与主要的荧光团标记的次级寡聚。[图1附近]
后唑启动子富集于次级DNA结构形成基序中,例如G-四链体(G4S)。在这里,我们描述了“ G4Access”,这是一种通过核酸酶消化与开放染色质相关的分离和序列G4的方法。g4Access是抗体和交联的非依赖性和富集的计算预测G4S(PG4S),其中大多数在体外得到了证实。使用人和小鼠细胞中的G4ACCESS,我们鉴定出与核小体排除和启动子转录相关的细胞类型的G4富集。G4ACCESS允许测量G4配体处理后G4曲目使用的变化,HDAC和G4解旋酶抑制剂。将G4ACCESS应用于来自相互杂交小鼠交叉的细胞表明G4在控制活动印迹区域中的作用。一致地,我们还观察到G4ACCESS峰是未甲基化的,而PG4S的甲基化与DNA上的核小体重新定位相关。总体而言,我们的研究为研究细胞动力学的G4提供了一种新工具,并突出了它们与开放染色质,转录及其对DNA甲基化的拮抗作用的关联。
Zn 2+是大约850个人类转录因子所需的必需金属。这些蛋白质如何获得其必需的Zn 2+辅因子,以及它们是否对细胞中不稳定的Zn 2+池的变化敏感仍然是开放的问题。使用ATAC-SEQ进行可访问的染色质的区域,并结合转训练因子富集分析,我们研究了不稳定锌池的增加和减少如何影响染色质的可及性和转录因子富集。我们发现685个转录因子基序被差异富集,对应于507个独特的转录因子。在启动子与基因间区域的扰动模式和转录因子的类型截然不同,锌 - 纤维转录因子在升高的Zn 2+中强烈富集在基因间区域中。测试ATAC-SEQ和转录因子富集分析预测是否与转录因子结合的变化相关,我们使用ChIP-QPCR来实现六个p53结合位点。我们发现,对于六个目标,p53结合与ATAC-SEQ确定的局部可访问性相关。这些结果降低了不稳定锌的变化改变染色质的可及性和转录因子与DNA的结合。
yingjie Zhao 1,Yujue Wang 1,Lijie Shi 1,Woman M. M. McDonald-McGinn 2.3,T。BlaineCrowley 2.3,Daniel E. McGinn 2.3,Oanh T. T. T. T. T. T. 3,Daniella Miller 1,Daniella Miller 1,Jhih-Brong Lind 1,Jhih-Brong Lind 1,Elaine Zackai Zackai 2,3,3,H。Richn. John 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4。 W. C. Chow 5,Jacob A. S. Vorstman 6,Claudia Vingerhoets 7,Therese Van Amelsvoort 7,Doron Gothelf 8,Ann Swillen 9,Jeroen Breckpot 9,Joris R. Vermeesch 9,Stephan Eliez 10,Stephan Eliez 10,Maude Schneider 10,Marianne B. Van den Bree Bree J. Owen 11, Wendy R. Kates 12.13, Gabriela M. Repetto 14, Vandana Shashi 15, Kelly Schoch 15, Carrie E. Bearden 16, M. Cristina Digilio 17, Marta UNOLT 17,18, Carolina Putotto 19, Bruno Marino 19, Maria Pontillo 20, Marco Armando 20.21, Stefano Vicari 22, Kathleen Angkustsiri, Linda, Linda, Linda Linda坎贝尔24,蒂法尼·布斯(Tiffany Busa)25,达米安·海内·苏纳(Damian Heine-Suñer)26,基兰·C·墨菲27,德克兰·墨菲28.29,六,六,路易斯·费尔南德斯30,国际22q11.2大脑和行为联盟(IBBC)*,Zhengdong D. Zhang Zhang 1,Elizabeth。 Goldmuntz 31,Raquel E. Gur 32,33,Beverly S. Emanuel 2.3,Deyou Zheng 34,Christian R. Marshall 35,Anne S. Bassett 36,37.38,Tao Wang 39和Bernice E.
摘要背景:人类疟原虫恶性疟原虫中异染色质的维持、调节和动态变化因其在互斥毒力基因表达和关键发育调节因子沉默中的调节作用而受到越来越多的关注。染色质免疫沉淀后测序 (ChIP-seq) 等全基因组分析的出现有助于了解染色质组成;然而,即使在模型生物中,ChIP-seq 实验也容易受到由潜在染色质结构引起的内在实验偏差的影响。方法:我们进行了一项对照 ChIP-seq 实验,重新分析了之前发表的 ChIP-seq 数据集,并比较了不同的分析方法,以表征恶性疟原虫全基因组分析的偏差。结果:我们发现用于 ChIP-seq 标准化的输入对照样本中的异染色质区域在整个恶性疟原虫基因组的测序覆盖率方面系统性地代表性不足。这种代表性不足,加上非特异性或低效的免疫沉淀,可能导致在这些区域识别出假富集和峰值。我们观察到,在特定和有效的 ChIP-seq 实验中,背景水平也会出现这种偏差。我们进一步报告了不同的读取映射方法如何扭曲高度相似的亚端粒区域和毒力基因家族中的测序覆盖率。为了改善这些问题,我们讨论了可用于表征真正的染色质相关蛋白的正交方法。结论:我们的结果强调了染色质结构对寄生虫全基因组分析的影响以及谨慎的必要性
免疫细胞的功能性能依赖于复杂的转录调节网络。染色质的三维结构可以影响染色质状态和基因表达模式,并在基因转录中起重要的调节作用。目前用于研究染色质空间结构的技术包括染色质构象捕获技术及其衍生物,染色质可及性测序技术等。此外,最近出现的深度学习技术可以用作增强数据分析的工具。在这篇综述中,我们阐明了三维染色质结构的定义和意义,总结了可用于研究它的技术,并描述了树突状细胞,巨噬细胞,巨噬细胞,T细胞,B细胞和中性粒细胞的染色质空间结构的研究进展。