在石化沉积盆地中,CO 2与碳氢化合物之间的相互作用对碳氢化合物的产生和积累产生了显着影响。这项研究的重点是Huangqiao石油和天然气储层,该储藏室以在中国拥有最大的CO 2储备而闻名。在裂缝,碳和氧同位素分析中,方解石静脉的同位素同位素的同位素日期以及稀土元素(REE)分析用于阐明研究区域中无机和有机流体的年代学和起源。岩石学观测表明,存在各种流体夹杂物的成分,包括气态CO 2,气态CH 4,CH 4 -CO 2混合物和碳氢化合物流体。此外,通过拉曼定量测量和热力学模拟,计算了CH 4和CO 2轴承流体夹杂物的密度,成分,压力和温度特征。基于流体夹杂物和U – PB年代的捕集条件,确定了两个碳氢化合物充电的阶段:一个早期夏普阶段(大约200-185 MA),其特征是中期油和CH 4和早期始新世阶段(大约为61-41 mA),标有高成熟度和CH 4。co 2的积累事件分为两个阶段:在始新世早期(大约59-39 ma)期间高密度CO 2流体活性,而低密度CO 2流体活性则在第三级期期间(大约23-4 mA)。此外,深层流体流入储层导致水热改变,这是由异常高的均质化温度和玻璃体反射率所证明的。CO 2对原油具有提取作用,其较晚进入主要导致清除较轻的组件,尤其是CH 4。当高温水热CO 2进入油储油罐时,它会加速原油的开裂并改变液体的成分。这个热事件还加快了源岩的热演化,从而在整个储层的开发过程中导致提取,热解和气体位移。这项研究提出了一种全面的方法,用于定量研究这种性质的石化盆地的地质流体。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要。森林生态系统的管理与由于它们之间的强烈相互作用而导致气候变化的演变密不可分。根据这一假设,根据适应气候变化和减少气候变化的不利影响,分析了甜栗子森林管理策略以及碳估计。以及对甜栗子森林的管理及其影响或受到欧洲地区气候变化现象的影响或影响,树突年代学和遗传转移是两个重要方面,在这项工作中研究了与气候变化的相互作用。通过最新文献研究了栗子树突年代学对最近和遥远过去时期的气候变化和环境生态研究的贡献。通过树突年代学评估获得的信息可以用于预测当今正在进行的气候变化现象的未来影响。此外,由于遗传多样性是人口适应不断变化的环境的一种方式,因此本文介绍了有关栗子遗传多样性的一些数据,这些数据源自最近的科学出版物。关键字。castanea,栗子,气候变化,树突年代学,遗传多样性,森林管理
重建更新世的冰川时间和程度对于理解古气候至关重要。虽然已在北美山脉的西部进行了广泛的研究,但晚更新世的冰川山脉,但科罗拉多州西部麋鹿范围的冰川历史仍在研究中,尤其是在东河水域(East River Watershed),这是一个强烈的科学焦点。在这里,我们使用宇宙基因核素暴露和深度 - 轮廓约会方法来确定东河流域冰川的时机。我们使用冰川建模来重建古射液仪,并量化过去的气候条件。我们的发现表明,东河冰川从其最大位置撤退了约17-18 ka,转移到13至15 ka之间的衰老位置,然后经历了更大的静修至13 ka左右的高海拔。冰川建模表明,与现代条件相比,与现代条件相比,温度降低约为17-18 ka的最大冰扩展可能是维持的。此外,温度降低约为-4.0°C的温度降低可能支持13-15 ka的冰位。这些结果提供了有关东河分水岭和更广阔的西麋鹿范围以及晚期更新世期间更广阔的西麋鹿范围以及古气候条件的见解,这可能有助于对东河流域关键区域进化的未来研究。
伯克利地质年代学中心和加州大学伯克利分校的舒斯特实验室 实验室描述 PI Shuster 负责 BGC 和 UCB 的实验室设施,用于样品制备、特性分析、(U-Th)/He 和 4 He/3 He 热年代学以及宇宙成因核素分析。 设施包括: BGC 惰性气体实验室。BGC 惰性气体实验室设有: • 惰性气体热年代学实验室 (NGTL)。该设施设计用于 4 He/3 He 热年代学、40 Ar/39 Ar 热年代学、通过控制热提取表征惰性气体扩散动力学以及宇宙成因 21 Ne 和 3 He 测量。该实验室还可用作传统的 (U-Th)/He 实验室。NGTL 包括 (i) 经过校准的双目显微镜和摄像系统,用于制备和测量样品的几何形状; (ii) 超高真空 NG 提取系统,包括三个带有光束传输光学器件和高温计和热电偶反馈控制的二极管激光系统,在 175-1500 o C 之间提供优于 +/- 10 o C 的精度和准确度;(iii) 气体净化系统,包括 Janis 低温系统和校准标准和气体加标系统;(iv) Pfeiffer 气源四极杆质谱仪,用于使用同位素稀释测量 NG 丰度;(v) 可调收集狭缝 MAP-215-50 扇区场 NG 质谱仪,用于高精度同位素比测量;(vi) 激光烧蚀 ICPMS 实验室(如下所述),用于测量 U 和 Th。NGTL 的初始建设部分由 NSF MRI 拨款 EAR-0618219 资助,授予 PI Shuster,并继续获得 Ann 和 Gordon Getty 基金会的支持。 NGTL 实验室包括第二个可调收集狭缝 MAP-215-50 NG 质谱仪,该质谱仪配备自动稀有气体提取和低温纯化系统,可与上面描述的 NGTL 激光加热系统耦合,并针对宇宙成因 3 He 和 21 Ne 测量进行了优化,最初由 NSF I&F 计划拨款 EAR-1054079 资助给 PI Shuster。BGC U 子实验室。BGC U 子实验室包括一个带有过滤空气供应的温控仪器室,其中设有 LA-ICPMS 设备;一个相邻的 HEPA 过滤清洁化学实验室;以及专用的样品制备设施。• 激光烧蚀 ICPMS 实验室。该设施用于通过同位素稀释和激光烧蚀测量磷灰石和/或锆石中的 U 和 Th 浓度,以进行 (U-Th)/He 测定和 4 He/3 He 热年代学。该设备还用于通过同位素稀释法测量石英中的铀和钍,这对于解释宇宙成因 21 Ne 测量结果必不可少。它由 Thermo Fisher Scientific Neptune Plus 多接收器 ICPMS 组成,配有九个法拉第探测器,带有计算机切换的 10 11 和 10 12 欧姆输入电阻、具有离子计数和高丰度灵敏度离子能量过滤器的离散倍增电极电子倍增器、大容量干式接口泵以及高性能样品和撇取锥。该实验室最初由 NSF MRI 拨款 EAR-0930054 资助给 PI W. Sharp 和 D. Shuster,并继续获得 Ann and Gordon Getty 基金会的支持。UCB 和 BGC 的湿化学实验室。BGC 和附近的加州大学伯克利分校地球和行星科学系的 PI Shuster 可以使用专用的湿化学实验室空间。这些实验室包括标准通风柜(适用于矿物分离、酸蚀样品制备和常规(即非空白限制)石英中的 Be 提取)和一个过滤空气层流下流罩(适用于低空白 Be 提取化学)。
