摘要 人工智能 (AI) 是计算机科学的一个分支,它通过符号化编程来解决问题;也就是说,它耗时更少,结果更快。在制药行业,人工智能 (AI) 最近已成为一个热门话题。它在问题解决科学方面取得了长足的发展,在研究、营销、医疗保健、药学和工程领域有着广泛的应用。机器学习 (ML) 取得了令人印象深刻的成果,在药物发现和开发方面的需求不断增加。制药行业开发新药是一个相当困难和漫长的过程,通常需要数年时间,而且由于流失率增加,成本高昂。因此,有必要利用人工智能 (AI) 等创新技术来加强新药的开发过程。人工智能使机器和计算机能够执行类似人类的任务,并在试图解决特定挑战时做出决策。问题的解决基于在记忆和适应性过程中获得的学习阶段,以及通过训练机器来应对新障碍而获得的概括和专业知识。本综述论文重点介绍了人工智能在制药行业多个领域的主要作用,包括临床试验、药物开发、制造、药物分析、质量保证和药物药代动力学预测。通过使用人工智能,制药行业的这些领域可以更快地实现目标,减少人类的努力,从而减轻他们的负担。
人工智能 (AI) 已经彻底改变了多个领域,高等教育也不例外。在大学环境中,特别是在系统工程等领域,人工智能已经开始改变教学和评估的方式,带来了前所未有的机遇和挑战。人工智能能够自动执行任务、个性化教学和提高管理效率,这对教育行业来说是一项重大进步 [1]。然而,这些机遇也伴随着必须紧急解决的道德和实际问题 [2]。ChatGPT 等生成式人工智能模型的出现引发了关于它们对学术诚信和学习过程的影响的争论。虽然一些教育工作者认为这些技术是加强教育的有力工具,但另一些人担心它们可能会破坏学生的批判性思维能力并损害他们作品的真实性 [2]。这些担忧
成功完成本课程的前提是,学生将在整个课程期间(通常每周每学分 3 小时)为每个学分花费至少 45 小时用于教学、准备/学习或课程相关活动,包括但不限于实习、实验室和临床实践。其他课程结构的工作量预期与教学大纲中所述相同。a.项目:将为您提供最终团队项目,以实践 AI 原则。由 3-4 人组成的自选团队将共同解决课程中讨论的一些选定问题。该团队项目将是一个协作小组项目。您可以自由选择自己的合作伙伴,但您不能在项目中途更改合作伙伴。作为学习目标的一部分,学期项目的逐步设计和实施将通过作业完成。b.考试:将有一次期中考试和一次期末考试。c. 测验:将有 1-2 次测验,每次测验都将算作家庭作业。d. 家庭作业:每项家庭作业通常以应用程序为中心,包括书面和编程部分。
红队模拟现实世界中对组织、基础设施或个人等目标的攻击,以测试他们的防御能力并评估漏洞。人工智能在红队网络攻击中发挥着重要作用。本文通过研究人工智能方法在各种情况下如何被滥用以及确定这些攻击的典型目标,探讨了人工智能在红队中的影响。最近的研究强调了与大型语言模型(LLM)相关的风险,这是一种先进的人工智能,以及它们重塑红队领域的潜力。本文旨在进行全面回顾,分析人工智能在网络攻击中的作用及其对红队实践的影响。论文第 2 章分析了提交的文章,总结了其方法和结果。本文进行了范围界定审查,旨在确定红队中使用的 AI 方法及其有针对性攻击的性质。第 3 章介绍了扩展的文献综述,采用叙述性综述和滚雪球抽样方法来实现其目标。该评论重点介绍了红队攻击中使用的大型语言模型 (LLM)。它探讨了 LLM 和其他高级 AI 方法在网络攻击领域的作用,重点介绍了最近的研究及其目标。AI 正在推动整个红队领域的变革,而 LLM 等高级 AI 既带来了机遇,也带来了风险。自动化网络攻击的兴起带来了新的复杂程度,使得这些攻击越来越难以检测。网络犯罪分子正在利用可访问的 AI 工具执行自动化和高度逼真的攻击,通常只需要极少的人为干预。这些基于 LLM 的应用程序不仅使攻击者能够优化他们的策略,而且由于 AI 系统内的漏洞,还存在严重风险,可能导致严重后果。例如,对 AI 驱动的攻击的模拟显示出很高的成功率,凸显了这些工具增强网络攻击方法的潜力。讨论了 Auto-GPT 等工具在未来向公众推出时被滥用的可能性。需要对网络攻击中的 AI 进行研究,以应对红队中使用 AI 应用程序所带来的威胁。
令人兴奋的新药、新技术和改进的工作方式开始被引入,它们挽救和延长了我们所爱之人的寿命,或极大地改善了我们的生活质量。NHS Wales 应用程序及其配套网站是改变患者与威尔士健康和社会护理服务互动方式的一个例子。通过该应用程序,在 GP 注册的患者可以访问他们的健康记录摘要并查看他们的健康史、订购重复处方、查看过去的 GP 处方以及预订、查看和取消与执业人员的预约。该应用程序还将提供更大的候补名单透明度,促进患者与二级护理临床医生在手术前后的互动,并引入用于数字化信件和通信的混合邮件解决方案。
在当今数字时代,将技术融入教育对于满足学习者多样化的需求变得越来越重要。随着教育机构努力提高学生的参与度和学习成果,游戏化和人工智能 (AI) 等创新策略已成为强大的工具。游戏化将类似游戏的元素融入非游戏环境,旨在提高学习积极性并创造沉浸式学习体验[1]。通过利用积分、徽章和排行榜等游戏机制,教育工作者可以营造一种既有竞争性又有协作性的环境,鼓励学生在学习过程中发挥积极作用。另一方面,人工智能通过分析学生数据并调整内容以满足个人需求来提供个性化的学习体验,从而促进更有针对性的教育方法[2]。
“系统、决策和控制研究”系列(SSDC)涵盖了广泛认知的系统、决策和控制各个领域的新发展和进步以及最新技术水平——快速、最新且高质量。旨在涵盖与系统、决策、控制、复杂过程和相关领域相关的最新技术和未来发展的理论、应用和观点,这些领域涉及工程、计算机科学、物理学、经济学、社会和生命科学,以及它们背后的范式和方法。本系列包含系统、决策和控制方面的专著、教科书、讲义和编辑卷,涉及网络物理系统、自主系统、传感器网络、控制系统、能源系统、汽车系统、生物系统、车辆网络和联网汽车、航空航天系统、自动化、制造、智能电网、非线性系统、电力系统、机器人、社会系统、经济系统等领域。对于投稿者和读者来说,特别有价值的是较短的出版周期以及全球范围的分发和曝光,这使得研究成果能够广泛而迅速地传播。
SciELO 预印本 - 本文档为预印本,其当前状态可在以下网址获取:https://doi.org/10.1590/SciELOPreprints.10389
我们提出了一种方法来弥合人类视觉计算模型与视觉障碍 (VI) 临床实践之间的差距。简而言之,我们建议将神经科学和机器学习的进步结合起来,研究 VI 对关键功能能力的影响并改进治疗策略。我们回顾了相关文献,目的是促进充分利用人工神经网络 (ANN) 模型来满足视障人士和视觉康复领域操作人员的需求。我们首先总结了现有的视觉问题类型、关键的功能性视觉相关任务以及当前用于评估两者的方法。其次,我们探索最适合模拟视觉问题的 ANN,并在行为(包括性能和注意力测量)和神经层面预测它们对功能性视觉相关任务的影响。我们提供指导方针,为未来针对受 VI 影响的个体开发和部署 ANN 的临床应用研究提供指导。