高通量的短读RNA-seq协议通常会产生成对的末端读数,其中片段的中部未延迟。我们探索是否可以在没有参考基因组的情况下从测序的两个末端重建全长片段,这是我们称为从头桥接的问题。解决此问题提供了更长,更具信息性的RNA-seq读取,并有益于下游RNA-Seq分析,例如转录本组装,表达量化和拼接不同分析。然而,由于替代剪接,成绩单噪声和测序错误,从头桥接是一项挑战且复杂的任务。尚不清楚数据是否为准确的桥接提供了SU CIENT信息,更不用说确定真正桥梁的E CIENT算法了。方法已被提出在存在参考基因组(称为基于参考的桥接)的情况下桥接成对的末端读取,但是由于后者使用的基础组合de Bruijn图(CDBG),算法远离从头桥接的缩放范围,后者通常包含数百万个角色和Edges和Edges和Edges和Edges。我们为此问题设计了一种新的截断的Dijk- Stra的算法,并提出了一种新型算法,该算法将最短的路径树重复使用,以避免从scratch中运行所有顶点的截断的di-jkstra的算法,以进一步加速。这些创新技术会产生可扩展的算法,这些算法可以在CDBG中桥接所有配对端的读数,并具有数百万个顶点。我们的实验表明,成对的RNA-seq读数可以在很大程度上准确地桥接。所得工具可在https://github.com/shao-group/rnabridge-denovo上免费获得。
心脏数字双胞胎(CDTS)of er个性化的内部心脏表示,以推断与心脏机制相关的多尺度特性。CDT的创建需要有关躯干上电极位置的精确信息,特别是对于个性化心电图(ECG)校准。然而,当前的研究通常依赖于对ECG电极定位的躯干成像和手动 /半自动方法的额外获取。在这项研究中,我们提出了一种新颖和E FFI Cient拓扑知识模型,以完全自动从2D临床标准心脏MRIS中提取个性化的ECG标准电极。具体来说,我们从心脏MRI中获得稀疏的躯干轮廓,然后从轮廓中定位12铅ECG的标准电极。心脏MRI旨在成像心脏而不是躯干,从而导致成像中不完整的躯干几何形状。为了解决错过的拓扑结构,我们将电极合并为关键点的子集,可以将其与3D躯干拓扑明确对齐。实验结果表明,所提出的模型优于耗时的常规模型投影方法(Euclidean距离:1。24±0。293厘米与1。48±0。362 cm)和E FFI效率(2 S vs. 30-35分钟)。我们进一步证明了使用检测到的电极进行硅内ECG模拟的e FF具有效果,从而突出了它们创建准确和E ffi cient CDT模型的潜力。该代码可在https://github.com/lileitech/12Lead_ecg_electrode_localizer上获得。©2025 Elsevier B. V.保留所有权利。
早在1946年,J。A. Wheeler提出了一个实验,以验证一对理论的预测,即在n灭nih灭时发出的两个量子,具有零相对角动量的正电子 - 电子对,彼此之间是正确的。该建议涉及对各种方位角上两个an灭光子散射的巧合测量。Pryce和Ward'以及Snyder,Pasternack和Hornbostel报告了详细的理论研究。 '当两个计数器彼此成直角时,预测的最大不对称比率是当相机的共同平面物与2个。85,以8 = 82'的散射角出现。bleuler和bradt4使用了两个末端窗口6-m计数器作为检测器,并观察到与该理论不一致的不对称比。尽管如此,与结果相关的误差范围是如此之大,以至于使理论和实验之间的详细比较变得相当不利。同时,汉娜(Hanna)进行了类似的实验,并进行了更多的E%CIENT计数器排列,发现观察到的不对称比率始终小于所预测的不对称比。因此,通过使用更多的E%CIENT探测器和更有利的条件来重新分配此问题,这似乎是非常需要的。最近开发的闪烁计数器已被证明是可靠且高度高的伽马射线检测器。随着这种提高的效率,大约是G-M计数器的十倍,重合计数率将增加一百倍。被使用。在我们的实验中,两个RCA 5819摄影管和两个蒽晶体1x1xs。用这些蒽晶体获得的歼灭辐射的效率为7%至8%,与计算值相比有利。几何布置在图中示意性1。正电子源Cu〜被Deuteron Bombard the激活在哥伦比亚回旋子的铜靶上。采用电镀方法将CU活性与其他
Neuromorphic computing has enormous potential for very fast and extremely energy-efficient data processing. It can, therefore, play a key role in data analysis in many fields, like for example in healthcare, sustainable food supply for the expanding world population, failure analysis of the power grid as well as for growth in key parts of the Dutch economy, such as for diagnosis of maintenance tasks in logistics. At the same time, neuromorphic computing allows applications such as evaluations of high-dimensional problems or cryptography that are simply impossible or too time and power consuming with standard approaches. In addition, the development of expertise and neuromorphic data processing capabilities would limit the need to transfer privacy-sensitive data and improves digital sovereignty.
摘要。在高能物理实验中,就e ffi cient存储和管理带来了巨大的挑战。我们探讨了数字双胞胎概念在SSD RAID池中的应用,其中创建了物理系统的数字复制品,以提高HEP实验中数据存储的E FFI效率。通过开发数字双胞胎的存储系统,该研究旨在促进HEP域内各种工作量的持续监控,全面分析和战略优化。本研究的关键目标包括开发用于数据存储系统的数字双胞胎以及制定生成模型,以评估在特定配置和数据负载参数下数据存储系统性能的性能。
接下来,通过与(2)相似的计算来检查平均曲率,相对于正常指向附近的共包构边界,通过与(2)的计算进行检查,将证明简化为与球形拓扑处的单个共形边界的情况。We can therefore cut away an asymptotic end of M by introducing a new boundary component { Ω= ϵ } , with ϵ sufficient small so that this new boundary component satisfies, say, H > 0 with respect to the outward normal (thus H < 0 < n − 1 with respect to the inward normal).此边界组件将成为新的,截断,多种多样的边界的一部分,但仍以m表示。
摘要。Two most common ways to design non-interactive zero knowl- edge (NIZK) proofs are based on Sigma ( Σ )-protocols (an efficient way to prove algebraic statements) and zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK) protocols (an efficient way to prove arithmetic statements).然而,在加密货币(例如保护隐私凭证,隐私保护审核和基于区块链的投票系统)的应用中,通常使用加密,承诺或其他代数加密密码方案来实施一般性声明的ZK-SNARKS。此外,对于许多不同的算术陈述,也可能需要共同实施许多不同的算术陈述。显然,典型的解决方案是扩展ZK-SNARK电路,以包括代数部分的代码。然而,代数算法中的复杂加密操作将显着增加电路尺寸,从而导致不切实际的证明时间和CRS大小。因此,我们需要一个足够的证明系统来进行复合语句,包括代数和算术陈述。不幸的是,虽然ZK-SNARKS的连接相对自然,目前可以使用许多有效的解决方案(例如,通过利用提交和培训技术),很少讨论ZK-SNARKS的分离。在本文中,我们主要关注Groth16的分离陈述,并提出了Groth16变体-CompGroth16,该变体为Groth16提供了一个框架,以证明由代数和算术组成的组合组成的分离性陈述。特别是,我们可以将Compgroth16与σ -Protocol甚至Compgroth16与Compgroth16直接相结合,就像σ -Protocols的逻辑组成一样。从中,我们可以获得许多良好的属性,例如更广泛的表达,Beter Prover的效率和较短的CR。此外,对于Compgroth16和σ-协议的组合,我们还提出了两个代表性的场景,以证明我们的构建实用性。
Drug discovery is an academical and commercial process of global importance. Accurate identification of drug-target interactions (DTIs) can significantly facilitate the drug discovery process. Compared to the costly, labor-intensive and time-consuming experimental methods, machine learning (ML) plays an ever-increasingly important role in effective, efficient and high-throughput identification of DTIs. However, upstream feature extraction methods require tremendous human resources and expert insights, which limits the application of ML approaches. Inspired by the unsupervised representation learning methods like Word2vec, we here proposed SPVec, a novel way to automatically represent raw data such as SMILES strings and protein sequences into continuous, information-rich and lower-dimensional vectors, so as to avoid the sparseness and bit collisions from the cumbersomely manually extracted features. Visualization of SPVec nicely illustrated that the similar compounds or proteins occupy similar vector space, which indicated that SPVec not only encodes compound substructures or protein sequences efficiently, but also implicitly reveals some important biophysical and biochemical patterns. Compared with manually-designed features like MACCS fingerprints and amino acid composition (AAC), SPVec showed better performance with several state-of-art machine learning classifiers such as Gradient Boosting Decision Tree, Random Forest and Deep Neural Network on BindingDB. The performance and robustness of SPVec were also confirmed on independent test sets obtained from DrugBank database. Also, based on the whole DrugBank dataset, we predicted the possibilities of all unlabeled DTIs, where two of the top five predicted novel DTIs were supported by external evidences. These results indicated that SPVec can provide an effective and efficient way to discover reliable DTIs, which would be beneficial for drug reprofiling.
摘要◥目的:因为BRCA1是一种高风险的乳腺/卵巢癌敏感性基因,所以不确定的临床意义(VUS)的BRCA1序列变体使遗传咨询变得复杂。大多数VU是罕见的,可靠的基于临床和遗传数据的分类。然而,所有病原BRCA1变体都分析了有缺陷的同源重组DNA修复(HRR)。因此,BRCA1 VU可以根据其对该途径的功能影响进行分类。Experimental Design: Two hundred thirty-eight BRCA1 VUS — comprising most BRCA1 VUS known in the Netherlands and Belgium — were tested for their ability to complement Brca1- de fi - cient mouse embryonic stem cells in HRR, using cisplatin and olaparib sensitivity assays and a direct repeat GFP (DR-GFP) HRR assay.使用25个已知良性和25个已知
“双重碳”政策是实现“双重碳”目标的战略工具。“双重碳”政策的定量分析可以为制度设计和调整政策提供理论支持和决策参考,从而进一步改善“双重碳” 1 + N政策系统。By constructing a three-dimensional analysis framework of “ instrument-goal-object ” , adopting the content analysis method, and combining the coding results of the “ Dual Carbon ” policy text to conduct multidimensional cross-analysis, we found that the overall design of the “ Dual Carbon ” policy is reasonable, but at the same time, there are problems such as unbalanced distribution of policy instruments, incomplete coverage of policy goals, insuf fi cient政策对象的协同作用,政策维度之间的匹配程度较低。针对这些问题,提出了针对性的缓解措施。