注释:1.电流传输比(百分比)定义为输出集电极电流 I O 与正向 LED 输入电流 I F 之比乘以 100。2.设备被视为双端设备:引脚 1 和 3 短接在一起,引脚 4、5 和 6 短接在一起。3.根据 UL 1577,每个光耦合器都通过施加绝缘测试电压 4800 V RMS 持续 1 秒进行验证测试。4.逻辑高电平下的共模瞬态抗扰度是共模脉冲 V CM 上升沿上的最大可容忍(正)dV CM /dt,以确保输出将保持在逻辑高状态(即,V O > 2.0 V)。逻辑低电平下的共模瞬态抗扰度是共模脉冲信号 V CM 下降沿上的最大可容忍(负)dV CM /dt,以确保输出将保持在逻辑低状态(即,V O < 0.8 V)。5.1.9 k 负载代表 1.6 mA 的 1 TTL 单位负载和 5.6 k 上拉电阻。6.交流输出电压比其中频值低 3 dB 的频率。7.建议使用连接在引脚 4 和 6 之间的 0.1 μF 旁路电容。8.对于任何给定设备,脉冲宽度失真 (PWD) 定义为 |t PHL - t PLH |。9.相同测试条件下任意两个部件之间的 t PLH 和 t PHL 之间的差异。
注释:1. 百分比电流传输比定义为输出集电极电流 IO 与正向 LED 输入电流 IF 之比乘以 100。2. 器件被视为双端器件:引脚 1 和 3 短接在一起,引脚 4、5 和 6 短接在一起。3. 按照 UL 1577,每个光电耦合器都通过施加 4800 V RMS 的绝缘测试电压 1 秒进行验证测试。4. 逻辑高电平下的公共瞬态抗扰度是共模脉冲 V CM 上升沿上的最大可容忍(正)dV CM /dt,以确保输出将保持在逻辑高状态(即 VO > 2.0 V)。逻辑低电平下的共模瞬变抗扰度是共模脉冲信号 V CM 下降沿可容忍的最大(负)dV CM /dt,以确保输出保持在逻辑低状态(即 VO < 0.8 V)。5. 1.9 k 负载代表 1.6 mA 的 1 TTL 单位负载和 5.6 k 上拉电阻。6. 交流输出电压比其中频值低 3 dB 的频率。7. 建议使用连接引脚 4 和 6 之间的 0.1 μF 旁路电容。8. 对于任何给定设备,脉冲宽度失真 (PWD) 定义为 |t PHL - t PLH |。9. 在相同测试条件下,任何两个部件之间的 t PLH 和 t PHL 之间的差值。
10.13 中断寄存器 2 模式寄存器 MSB 和 LSB (0Dh,0Eh) .......................................................................... 42 10.14 接收器通道状态 (0Fh) (只读) ...................................................................................................... 43 10.15 接收器错误 (10h) (只读) ............................................................................................................. 44 10.16 接收器错误掩码 (11h) ............................................................................................................. 45 10.17 通道状态数据缓冲区控制 (12h) ............................................................................................. 45 10.18 用户数据缓冲区控制 (13h) ............................................................................................................. 46 10.19 采样率比率 (1Eh) (只读) ............................................................................................................. 47 10.20 C-Bit 或 U-Bit 数据缓冲区 (20h - 37h) ............................................................................................. 47 10.21 CS8420 I.D. 和版本寄存器 (7Fh) (只读) ................................................................................ 47 11. 系统和应用问题 ................................................................................................................ 48 11.1 复位、断电和启动选项 ................................................................................................ 48 11.2 发射器启动 ......................................................................................................
4-1.TFT LCD 面板驱动(参考连接器:Hirose Electric CO., LTD.产品编号:FH12A-40S-0.5SH (55) 顶部接触类型) ※ 底部接触类型可根据安装连接器的侧面和 FPC 的端子侧面进行选择。端子编号端子名称 功能 备注
[注2] 每个 CCFT 的参考数据是通过计算得出的。(IL × VL)该数据不包括逆变器的损耗。(IL=6.0mArms) [注3] 灯频率可能会对水平同步频率产生干扰,从而导致显示器出现抖动。因此,灯频率应尽可能与水平同步频率以及水平同步谐波分离,以避免干扰。 [注4] 应将高于此值的电压施加到灯上超过 1 秒才能启动。否则灯可能无法打开。 [注5] 由于灯是消耗品,上面写的使用寿命是参考值,SHARP 不在此规格表中保证。当灯(LCD 模块的长边)水平放置时,以上值适用。 (横向放置)灯泡寿命定义为在以下条件下应用 ① 或 ②(在 Ta=25 o C、IL=6.0mArms 下连续开启) ① 亮度变为标准条件下原始值的 50%。 ② Ta=-30 o C 时的启动电压超过最大值 1300Vrms。 (如果灯泡处于纵向放置,由于灯泡内部汞密度的变化,灯泡寿命可能会有所不同。)在低温环境下使用时,灯泡损耗会加速,亮度会降低。 (在低温条件下连续使用约 1 个月可能会使亮度降低到原始亮度的一半。)在低温环境下使用时,建议定期更换灯泡。 [注 6] 背光源的性能,例如寿命或亮度,在很大程度上受灯泡 DC-AC 逆变器特性的影响。当您设计或订购逆变器时,请确保不会发生因背光和逆变器不匹配而导致的照明不足(误点亮、闪烁等)。确认后,应在与安装在仪器中的条件相同的条件下操作模块。务必使用带有安全保护电路的背光电源,例如过电压、过电流和/或放电波形的检测电路。务必使用可以独立控制 CCFT 灯管一侧的检测电路。否则,当 CCFT 的一侧开路时,过电流可能会施加到灯管的另一侧。推荐的逆变器为“CXA-0454(TDK)”。(在一般温度条件下也推荐使用“CXA-P1212B-WJL(TDK)”。)[注 7] 逆变器的设计必须允许两个 CCFT 灯管的阻抗偏差和负载电容的容量偏差。 [注8] 在10lx或更低的环境下,可能会发生漏亮或亮灯延迟的情况。
LM35 系列是精密集成电路温度传感器,其输出电压与摄氏 (Centigrade) 温度成线性比例。因此,LM35 比以 ˚ 开尔文校准的线性温度传感器更具优势,因为用户无需从其输出中减去较大的恒定电压即可获得方便的摄氏度缩放。LM35 不需要任何外部校准或微调即可提供室温下 ± 1 ⁄ 4 ˚C 的典型精度以及整个 −55 至 +150˚C 温度范围内 ± 3 ⁄ 4 ˚C 的典型精度。通过晶圆级微调和校准可确保低成本。LM35 的低输出阻抗、线性输出和精确的固有校准使与读出或控制电路的接口特别容易。它可与单电源或正负电源一起使用。由于它仅从电源中吸取 60 µA 的电流,因此自热非常低,在静止空气中低于 0.1˚C。LM35 的额定工作温度范围为 −55˚ 至 +150˚C,而 LM35C 的额定工作温度范围为 −40˚ 至 +110˚C(−10˚ 精度更高)。LM35 系列提供包装
1 产品简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 快速参考数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 7 10 焊接. ... . ...
1 • 采用超小型 0.64 毫米封装 (DPW),间距为 0.5 毫米 SN74LVC1G04 器件执行布尔函数 Y = A。 • 输入接受高达 5.5 V 的电压,允许向下转换为 V CC CMOS 器件具有高输出驱动能力,同时在很宽的运行范围内保持低静态功耗。 • 低功耗,最大 10 μ A I CC SN74LVC1G04 器件采用多种封装,包括超小型 DPW 封装,体积为 0.8 毫米 × 0.8 毫米。 • 支持实时插入、部分断电。模式和反向驱动保护 • 闩锁性能超过 100 mA 器件信息 (1)
6.1 电气描述 ................................................................................................................................................................................ 8 6.2 直流特性 .......................................................................................................................................................................... 9 6.3 信号负载 ...................................................................................................................................................................... 10 6.4 交流特性 ...................................................................................................................................................................... 11