1 康奈尔大学微生物学系,纽约州伊萨卡 14853,美国 2 伍兹霍尔海洋研究所海洋化学和地球化学系,马萨诸塞州伍兹霍尔 02543,美国 3 佛罗里达大学土壤、水和生态系统科学系,佛罗里达州盖恩斯维尔 32611,美国 4 佛罗里达大学森林、渔业和测绘科学学院,佛罗里达州盖恩斯维尔 32611,美国 5 美属维尔京群岛大学海洋与环境研究中心,美属维尔京群岛圣托马斯 00802 6 南佛罗里达大学海洋科学学院,佛罗里达州圣彼得堡 33701,美国 7 美国地质调查局圣彼得堡海岸与海洋科学中心,佛罗里达州圣彼得堡 33701,美国 8 北伊利诺伊大学生物科学系,伊利诺伊州迪卡尔布 60115,美国 9 范霍尔·拉伦斯坦应用科学大学科学,8901 BV 吕伐登,荷兰 10 瓦赫宁根大学海洋动物生态学组,6708 PB 瓦赫宁根,荷兰 11 蒙大拿州立大学微生物学和细胞生物学系,博兹曼,MT 59717,美国 12 阿鲁巴国家公园基金会,圣克鲁斯,阿鲁巴岛
覆盖初级纤毛的质膜上积聚了多种受体和通道。为确保纤毛的传感功能,纤毛膜的胆固醇含量高于其他细胞膜区域。过氧化物酶体生物发生障碍 Zellweger 综合征以多囊肾为特征,与细胞中纤毛胆固醇水平降低有关。然而,纤毛胆固醇降低导致多囊肾病的病因机制仍不清楚。在这里,我们证明通过药物治疗或过氧化物酶体的基因耗竭降低纤毛胆固醇会损害纤毛离子通道多囊蛋白-2 的定位。我们还生成了培养的肾髓质细胞和携带在常染色体显性多囊肾病患者数据库中检测到的多囊蛋白-2 胆固醇结合位点错义变体的小鼠。这种错义蛋白显示正常通道活性,但定位到纤毛膜的频率降低。纯合小鼠表现出胚胎致死和内脏反位和多囊肾的纤毛病谱。我们的研究结果表明胆固醇控制多囊蛋白-2的纤毛定位以预防多囊肾病。
下文附有《旅游记忆》概念中存在的留置权以及冲突后的和解过程。在战争结束后,旅游业的发展迅速,澳大利亚的暴力社会和遗产产品在冲突中发生了变化,旅游业的资源开发利用了演员、私人或公众,隐含在领域内。塞西尔对冲突后旅游业发展和和解动力的机制影响力的深刻影响,将取代旅游部门、社会政治干部和发展。不考虑生产遗产和旅游背景对和解进程的影响,越南在第一阶段和波斯尼亚在第二阶段都经历了这一过程。旅游与和平
靠近水生食物链底部的纤毛微生物要么游动去寻找猎物,要么附着在基质上并产生摄食流来捕获路过的颗粒。在这里,我们使用一种流行的粘性流体球形模型来表示附着和游动的纤毛虫,其滑动表面速度可以提供纤毛流动的解析表达式。我们求解了溶解营养物浓度的平流扩散方程,其中佩克莱特数 (Pe) 反映了扩散与平流时间尺度的比率。对于固定的流体动力学功率消耗,我们问什么纤毛表面速度可以最大化微生物表面的营养通量。我们发现优化进食的表面运动取决于 Pe。对于在有限 Pe 下自由游动的微生物来说,采用“跑步机”表面运动来游动是最佳选择,但在 Pe 较大的极限下,这种跑步机解与保持生物体静止的对称偶极表面速度之间没有区别。对于附着的微生物,在 Pe 低于临界值时,跑步机解决方案是最佳的进食方式,但在 Pe 值较大时,偶极表面运动是最佳的。我们在开环数值模拟和渐近分析中验证了这些结果,并使用了基于伴生的优化方法。我们的研究结果挑战了现有的“最佳进食就是在所有佩克莱特数上最佳游动”的说法,并为海洋微生物中附着和游动解决方案的普遍性提供了新的见解。
开发新的和先进的材料,其特征是多功能但可量身定制的特性以及改善的环境兼容性是科学界面临的最大挑战之一,即满足不断发展的现代现代,更可持续的技术以及未来的突破性。朝这个方向发展,近年来已经出现了基于高渗透方法的材料设计的新概念,成为材料科学领域的热门趋势之一。这种概念的应用导致了广泛的有趣材料的发展,即所谓的高渗透材料(HEMS),具有出色的物理和化学特性,从高渗透合金(HEAS)开始,首次引入了Cantor等人的研究。1和Ye等。2在2004年。下摆由等摩尔或接近等摩尔比的多个主元素(通常为五个或更多元素)组成,它们是由高构型驱动的实体溶液的一个同质单相结构中随机分布的。在下摆中,高渗透氧化物(HEO)是非常有吸引力的纳米材料,可以通过利用大量可能的元素组合来获得惊人的特性,从而使它们有可能适合多种应用,包括能量存储,包括储能,包括K型,大型K介电材料,水分拆卸,水分析,催化,催化,热保护和绝缘。最后,我们目前研究的一些例子报告为3,4。参考文献1 B. Cantor,I.T.H。Chang,P。Knight,A.J.B。 Vincent Mater。 SCI。Chang,P。Knight,A.J.B。Vincent Mater。SCI。SCI。在本次演讲中,将介绍一般概述高渗透材料,尤其关注HEO,这不仅是其合成和表征,而且还涉及其功能性能以及实际应用。eng。A 2004,375-377,213-218。2 J.-W。 Yeh,S.-K。陈 Lin,J.-Y. gan,T.-S。 Chin,T.-T。 Shun,C.-H。 Tsau,S.-Y. Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。2 J.-W。 Yeh,S.-K。陈Lin,J.-Y. gan,T.-S。 Chin,T.-T。 Shun,C.-H。 Tsau,S.-Y. Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。Lin,J.-Y.gan,T.-S。 Chin,T.-T。Shun,C.-H。 Tsau,S.-Y. Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。Shun,C.-H。 Tsau,S.-Y.Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。Chang Adv。eng。mater。2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。2004,6,299-303。3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。3 B.Petrovičovà,W。Xu,M.G。Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。SCI。2022,12,5965。4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。SCI。 2023,13,721。SCI。2023,13,721。
1 2024 年 9 月 26 日,Genera 提供了有关波多黎各电力管理局(“PREPA”)热力发电设施信息请求的信息。2024 年 9 月 26 日,LUMA 提交了进一步遵守 2024 年 9 月 24 日决议和命令的动议。其中,LUMA 提交了 Genera 对能源局在 9 月 24 日命令附件 A 中提出的信息请求提供的未完成的回复。2 同一天,即 2024 年 9 月 27 日,Genera 提交了一份动议,要求提交对 2024 年 9 月 24 日发布的信息请求的修正回复。3 此外,LUMA 还包括了 Genera 对某些信息请求的回复,如提交文件中的附件 B 所示。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年12月30日。 https://doi.org/10.1101/2024.12.30.630763 doi:Biorxiv Preprint
本文件提出了拟议的补救令草案,旨在修订《2023 年北爱尔兰动乱(遗产与和解)法案》(“遗产法案”)并对其他两项法令做出相应修订。这是为了执行北爱尔兰高等法院在 Dillon、McEvoy、McManus、Hughes、Jordan、Gilvary 和 Fitzsimmons 申请和《2023 年北爱尔兰动乱(遗产与和解)法案》和北爱尔兰国务大臣 [2024] NIKB 11 案中于 2024 年 2 月作出的判决(“Dillon 判决”)。它还解决了北爱尔兰上诉法院于 2024 年 9 月在该案上诉中裁定的进一步不兼容性。本文件解释了拟议的补救令试图消除的不兼容性,以及根据《1998 年人权法案》(“HRA”)附表 2 第 3(1)(a) 款通过补救令进行处理的原因。补救令是实施这些对主要立法的修改的最合适方式。