Deeptrees项目提供了用于培训,微调和部署深度学习模型的工具,以使用德国的数字矫正图计划(DOP)以20 cm的分辨率从德国的数字矫正图计划(DOP)中使用公共访问的图像进行诸如Tree Crown分割,树状特征检测和树种分类。这些DOP图像是根据“ Amtliches popographis-kartographissches Informationssystems”(AKTIS)指南进行标准化的,以确保其长期使用的可靠性和一致性[2]。利用深层python软件包,我们成功地绘制了萨克森州(137,293,260棵树)和萨克森 - 安哈尔特(81,449,641棵树)的218,742,901棵树,展示了该工具在森林,Urban和乡村环境中的可伸缩性(图1)。这些数据集为市政当局和机构提供了宝贵的见解,以管理街道树木,监测城市绿化和评估森林健康,从而实现更明智的决策和可持续的管理实践。
本文件仅供参考,不应视为对产品的特定功能、状况或质量的保证。NVIDIA Corporation(“NVIDIA”)不对本文件中所含信息的准确性或完整性作出任何明示或暗示的陈述或保证,也不对其中的任何错误承担任何责任。NVIDIA 对此类信息的后果或使用,或因使用此类信息而导致的任何专利或其他第三方权利侵权不承担任何责任。本文件不承诺开发、发布或交付任何材料(定义如下)、代码或功能。NVIDIA 保留随时对本文件进行更正、修改、增强、改进和任何其他更改的权利,恕不另行通知。客户应在下订单前获取最新的相关信息,并应验证此类信息是否最新且完整。NVIDIA 产品的销售受订单确认时提供的 NVIDIA 标准销售条款和条件的约束,除非 NVIDIA 授权代表和客户签署的单独销售协议(“销售条款”)另有约定。NVIDIA 在此明确反对将任何客户一般条款和条件应用于本文件中提及的 NVIDIA 产品购买。本文件不直接或间接构成任何合同义务。NVIDIA 不一定对每种产品的所有参数进行测试。NVIDIA 产品并非设计、授权或保证适用于医疗、军事、飞机、太空或生命支持设备,也不适用于 NVIDIA 产品故障或失灵可合理预期会导致人身伤害、死亡或财产或环境损害的应用。NVIDIA 对 NVIDIA 产品在此类设备或应用中的包含和/或使用不承担任何责任,因此此类包含和/或使用由客户自行承担风险。NVIDIA 不声明或保证基于本文档的产品适用于任何特定用途。客户有责任评估和确定本文档中包含的任何信息的适用性,确保产品适合并适用于客户计划的应用,并对应用执行必要的测试,以避免应用或产品出现故障。客户产品设计中的缺陷可能会影响 NVIDIA 产品的质量和可靠性,并可能导致本文档中未包含的额外或不同的条件和/或要求。NVIDIA 不承担与任何违约、损害、成本或问题相关的责任,这些违约、损害、成本或问题可能基于或归因于:(i) 以任何违反本文档的方式使用 NVIDIA 产品或 (ii) 客户产品设计。本文档项下的任何 NVIDIA 专利权、版权或其他 NVIDIA 知识产权均未明示或暗示授予任何许可。NVIDIA 发布的有关第三方产品或服务的信息并不构成 NVIDIA 使用此类产品或服务的许可或担保或认可。使用此类信息可能需要根据第三方的专利或其他知识产权获得第三方许可,或根据 NVIDIA 的专利或其他知识产权获得 NVIDIA 许可。复制本文档中的信息仅需事先获得 NVIDIA 书面批准,未经更改复制并完全遵守所有适用的出口法律和法规,并附有所有相关条件、限制和声明。本文档和所有 NVIDIA 设计规范、参考板、文件、图纸、诊断、列表和其他文档(统称和单独称为“材料”)均“按原样”提供。 NVIDIA 对材料不作任何明示、暗示、法定或其他形式的保证,并明确否认所有关于非侵权、适销性和适用于特定用途的暗示保证。在法律允许的范围内,NVIDIA 在任何情况下均不对任何损害负责,包括但不限于任何直接、间接、特殊、偶发、惩罚性或后果性损害,无论该等损害是如何造成的,也无论责任理论如何,因使用本文档而导致,即使 NVIDIA 已被告知存在此类损害的可能性。无论客户因何种原因可能遭受任何损害,NVIDIA 对客户就本文所述产品承担的累计责任应根据产品销售条款进行限制。
许多神经系统条件会破坏大脑与其环境之间的信息流。这些疾病包括大脑或脊髓损伤,肌萎缩性侧面硬化症(ALS),脑干中风,多发性硬化症等。这些疾病和其他退化性疾病会损害控制肌肉或损害肌肉本身的神经途径。严重的病例可能导致自愿控制的丧失,包括眼动和呼吸。因此,受影响的个体可能会完全锁定在自己的身体上,无法以任何方式进行交流。现代医疗技术可以使许多如此瘫痪的人过长寿,这加剧了他们的疾病的个人,社会和经济负担。没有治愈这些疾病的任何选择,还保留了三个用于恢复功能的选项[1,2]。第一种选择是增加剩余输出选项的功能。换句话说,仍处于自愿控制的肌肉可以代替瘫痪的肌肉。这种替代通常在实践中受到限制,但仍然有用。对于特殊的技术,借助适当的技术,严重瘫痪的个体可以使用眼动来控制计算机[3];否则他们可能会使用手动作来产生合成语音[4-9]。第二种选择是通过绕过受损的通用途径来恢复功能。例如,脊髓损伤的患者可以使用高于病变水平的肌肉活动来控制瘫痪的肌肉的电刺激,
免疫细胞功能,增加肿瘤对免疫治疗的敏感性(6,7)。小分子抑制剂利用其免疫调节特性,可以优化治疗结果,改善患者反应,为推进癌症治疗提供新的机会(8)。在癌症免疫治疗中,使用小分子抑制剂作为佐剂的概念涉及利用这些药物的免疫调节作用来增强免疫治疗的有效性。例如,小分子抑制剂可以调节肿瘤微环境,增强免疫细胞功能,增加肿瘤对免疫治疗的敏感性,并获得更好的治疗结果(9-11)。在癌症治疗中使用小分子抑制剂作为佐剂是一个快速发展和扩大的领域。通过研究小分子抑制剂如何与免疫疗法相互作用,优化治疗方案,预测患者对治疗的反应,可以为未来的癌症治疗提供更多的机会和改进。在这篇综合评论中,我们深入探讨了小分子抑制剂作为癌症免疫治疗辅助剂的不断发展的作用,探索了它们的作用机制、临床应用以及改善治疗结果的潜力。
● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
印度政府化学和化肥部药品部 (DoP) 已委托 Biovantis Healthcare Private Limited (Biovantis) 编写本报告,该报告以 Biovantis 的独立研究和分析为基础。保留所有权利。本报告和相关工作的所有版权均归药品部 (DoP) 和 Biovantis Healthcare Private Limited 所有。本报告利用了一手和二手数据以及从各种来源获取的信息,例如文章(同行评审和一般)和对顶尖专家的访谈。专家和关键意见领袖表达的观点仅代表个人观点,不应代表他们所从事专业工作的组织。本报告仅供参考。尽管在编写本报告的过程中已尽应尽的义务确保信息准确无误,符合 Biovantis 和 DoP 的知识和信念,但报告内容无论如何都不能理解为专业建议的替代品。 Biovantis 和 DoP 既不推荐也不认可本报告中提及的任何特定产品或服务,也不对因依赖本报告而做出的决策结果承担任何责任。对于因用户依赖或接受本报告任何部分的指导而导致的任何行为或疏忽而产生的任何直接或间接损失,Biovantis 和 DoP 均不承担任何责任。
为流体力学学生项目制作风洞模型的替代方法摘要基于项目的工程教育方法使得学生希望在流体力学课程中创建功能性风洞模型来测试原始设计。本文根据成本、生产时间、易用性以及设备和材料的可及性,比较了几种快速原型 (RP) 方法与用于制造流体动力学模型的传统模具/铸造技术。考虑的 RP 技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工。这些方法从数字格式的原始设计开始,而传统方法(例如使用硅橡胶或藻酸盐模具铸造)至少需要粗略的物理原型。还讨论了 RP 模型的涂层和精加工工艺。背景和介绍 德克萨斯大学奥斯汀分校机械工程系已开展了 6 年的综合计划,旨在在整个本科课程中实施基于项目的方法 [1]。该计划的一个要素包括与流体力学入门课程同时进行的风洞测试。本科流体力学实验室有两个风洞,分别有 12"x12" 和 24"x24" 的测试部分。目前,学生仅使用风洞进行经典实验,使用现成的模型(例如横流中的圆柱体和翼型)以及进行流动可视化演示。被测试的对象形状简单,提供有限的创造性实验机会。我们希望通过为学生提供设计和测试原始空气动力学模型(例如汽车车身形状)的机会来增强这种体验。这促使人们研究快速生产原始设计风洞模型的替代方法。考虑了两种根本不同的方法:(1)从粗糙的物理原型开始成型/铸造模型和(2)从数字图像创建功能性物理模型。成型/铸造技术能够生产所有尺寸和几何公差的模型。这些方法可以利用各种不同的材料进行模具制作和铸造,包括热熔胶、乳胶、硅橡胶、聚硫橡胶、聚氨酯、藻酸盐、塑料树脂、环氧树脂、蜡、泡沫、粘土和水基石膏或混凝土。设备和该多步骤过程可能很长,并且需要一定的技能来形成可重复使用的模具和铸造模型。快速原型 (RP) 是指直接从 CAD 文件制造物理对象的过程。此类原型技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工等工艺。这些工艺中的每一个都会产生耐用、持久的模型,并且可以通过各种二次表面处理来增强其性能。
1. 价格风险:市场价格波动可能高于或低于预期,从而影响收入。例如,2023 年在印度,价格波动带来了重大挑战。也就是说,如果由于波动性增加(如 2023 年印度的情况),一年内的价格远高于或低于预期,该怎么办?2. 数量风险:天气不确定性带来太阳能和风能发电量低于预期的风险,影响履行 PPA 承诺的能力以及发电量和收入下降。3. 相互蚕食风险:随着更多可再生能源发电同时进入市场,可能会压低价格。可再生能源发电的地理和时间集中可能导致自我蚕食,即额外的可再生能源产能会降低其自身的盈利能力。在极端情况下,这甚至可能导致某些市场出现负价格
最近,密集的潜在变量模型已显示出令人鼓舞的结果,但是它们的分布式和潜在的代码使它们降低了易于解释,并且对噪声的影响较低。另一方面,稀疏表示更为简约,提供了更好的解释性和噪声稳健性,但是由于涉及的复杂性和计算成本,很难实现稀疏性。在此过程中,我们提出了一种新颖的无监督学习方法,以利用逐渐稀疏的尖峰和平板分布作为我们的先验,以在发电机模型的潜在空间上强化稀疏性。我们的模型由自上而下的发电网络组成,该网络将潜在变量映射到观测值。我们使用最大似然采样来推断发电机后方向的潜在变量,并且推理阶段的尖峰和平板正则化可以通过将非信息性潜在维度推动到零来引起稀疏性。我们的实验表明,学到的稀疏潜在表示保留了大多数信息,我们的模型可以学习解开的语义,并赋予潜在代码的解释性,并增强分类和denosing任务的鲁棒性。
在世界范围内,警察部门使用犯罪预测软件来预先预测并防止未来的罪行。预测性警务只是安全当局以及特殊的执法机构努力通过通过社会技术手段产生与未来相关的知识来使未来易于管理的众多方式之一。在进行预测性警务时,警察部门不仅会产生对未来的预期见解,而且会积极地塑造目前的介入。在本章中,我们将预测性警务分析为生产和塑造与犯罪相关的未来的社会技术过程。更确切地说,我们将预分法的警务分析为“翻译链”(Latour,1999:70)。这样做,我们追踪了犯罪预测的产生,从算法编程和数据输入到警察执行的数据:涉及许多认知翻译的过程 - 在不同的位置,但通常会及时接近。我们将预测性警务描述为一个由不同阶段组成的增量过程,专门针对基于德国的基于地方的犯罪预测软件。将这一过程作为“翻译链”,我们显示了一个较大的(认知)差距,该差距在预测过程的开始及其结束之间出现。在一个或多或少的无缝过程中,这一差距是由人类和非人类填补的,从相应警察总部的犯罪分析部门开始,并在预测的风险区域的街道上结束。我们收集了从11个警察部门,其中4个位于瑞士和7个在德国的定性数据。将预测性警务视为一系列翻译,使我们能够将其分析为一种富有成效的社会技术过程,该过程有时会以非线性方式进行。本章借鉴了一个有关我们在2017年至2018年间在德国和瑞士进行的犯罪预测软件实施和使用的研究项目。在数据收集时,所有部门都已经定期使用预测性警务工具,运行现场实验以确定是否使用和/或如何最好地实施此类工具,或者开发自己的工具。总共对警察主持人进行了62次半结构化访谈。这些官员从事各种角色,包括后台工作,