方法中,我们提出了一个神经网络模型WCE_Detection,以对23种消化道病变图像的准确检测和分类。首先,由于多酸性病变图像表现出各种形状和鳞片,因此在对象检测网络中采用了多探针头策略,以提高模型的多尺度病变检测的鲁棒性。此外,还引入了双向特征金字塔网络(BIFPN),通过添加跳过连接有效地融合了浅的语义特征,从而大大降低了检测错误率。在上述基础上,我们利用SWIN变压器具有其独特的自我发言机制和层次结构,并结合BIFPN特征融合技术来增强多酸性病变图像的特征表示。
内在的昼夜节律钟会产生生理和行为的昼夜节律,从而使我们能够适应由地球自转而产生的循环环境线索。昼夜节律失调会对不同生物的适应性和健康产生有害影响。前往火星和在火星上进行的星际旅行的环境线索与地球上的环境线索截然不同。这些差异带来了许多适应性挑战,包括对人类昼夜节律的挑战。因此,使昼夜节律适应火星环境是未来登陆和居住在火星的先决条件。在这里,我们回顾了与火星环境对昼夜节律的影响相关的研究进展,并提出了进一步研究的方向和改善昼夜节律钟适应未来火星任务的潜在策略。
引言埃及人最初描述糖尿病,其特征是多尿和体重减轻。然而,“糖尿病”一词首先被希腊医生Aertaeus(OM)使用。糖尿病是一个希腊术语,意思是“通过”,而Mellitus是一个拉丁语,意为“蜂蜜”(指甜味)。糖尿病大约每十秒钟死亡,是长期疾病和过早死亡的主要贡献者。它每年的生命也比艾滋病毒/艾滋病多(Kaul等,2013)。人类所知道的最早的疾病之一可能是糖尿病(DM)。超过3000年前,埃及书是第一个提及它的书(艾哈迈德,2002年)。1936年以晶体平原术语定义了1型和2型DM之间的区别(Olokoba等,2012)。和1988年,2型糖尿病最初被确定为代谢综合征的一部分(Olokoba等,2012)。高血糖水平由胰岛素产生(胰岛素缺陷),胰岛素作用(胰岛素抵抗)或两者都定义为称为糖尿病的疾病组。胰腺产生激素胰岛素。食用时食用时被转化为一种称为葡萄糖的糖,然后进入血液。葡萄糖必须通过胰岛素作为燃料在体内运输到人体细胞中。然后将多余的葡萄糖存储在肝脏和脂肪细胞中。当存在足够量的功能性胰岛素时,血糖水平升高,尿液中大量葡萄糖排出。高血糖水平会损害血管和神经,并增加心脏病,中风,高血压,肾脏疾病,失明,截肢和牙齿问题的风险。最普遍的糖尿病是2型糖尿病,有时称为非胰岛素依赖性糖尿病(NIDDM),其特征是高血糖,胰岛素抵抗和相对胰岛素短缺。当遗传,环境和行为风险因素相交时,2型糖尿病结果(Alam等,2014),
包括神经蛋白浮动的抽象炎症被认为是保护性反应,可用于修复,再生和恢复中枢神经系统中受损的组织。由于慢性应激,自由基的年龄相关,亚临床感染或其他因素导致生存率降低和神经元死亡增加,持续的肿瘤肿瘤。 昼夜节日症状是改变睡眠/唤醒周期的症状,是神经退行性疾病的最早迹象之一。 大脑的特异性或核心昼夜运动脑脑和肌肉ARNT(芳基氢核受体核转运剂)类似蛋白1(BMAL1)或反式Rev-erbα的蛋白质均具有损害的神经功能和cognitive-cognitive-Mance。 始终如一地,已显示出炎性细胞因子和宿主免疫反应的转录本与昼夜节律的破坏并行相同。 糖皮质激素既表现出类似于核心时钟反式激活者BMAL1和组织特异性超拉节奏的节奏的糖皮质激素,这对于控制神经炎症和重新建立稳态至关重要。 被广泛接受的是,糖皮质激素抑制核因子-Kappa B(NF-κB)介导的反式激活并抑制炎症。 最近的机械阐明表明,核心时钟成分还调节NF-κB介导的大脑和外围组织的反式激活。持续的肿瘤肿瘤。昼夜节日症状是改变睡眠/唤醒周期的症状,是神经退行性疾病的最早迹象之一。大脑的特异性或核心昼夜运动脑脑和肌肉ARNT(芳基氢核受体核转运剂)类似蛋白1(BMAL1)或反式Rev-erbα的蛋白质均具有损害的神经功能和cognitive-cognitive-Mance。始终如一地,已显示出炎性细胞因子和宿主免疫反应的转录本与昼夜节律的破坏并行相同。糖皮质激素既表现出类似于核心时钟反式激活者BMAL1和组织特异性超拉节奏的节奏的糖皮质激素,这对于控制神经炎症和重新建立稳态至关重要。被广泛接受的是,糖皮质激素抑制核因子-Kappa B(NF-κB)介导的反式激活并抑制炎症。最近的机械阐明表明,核心时钟成分还调节NF-κB介导的大脑和外围组织的反式激活。In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF- κ B signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroin fl ammation-神经变性。
先前的评论检查了年流制药的互补方面(3-8)。在这里,我们强调的是,对昼夜节律反应的研究现在已成为从细胞填充到类器官,动物模型和患者的连续性。性二态性目前正在成为昼夜节律调节主要吸收,分布,代谢,消除和毒性(ADMET)机制的重要因素。我们总结了那些靶向免疫,癌症,凝结,代谢,心血管系统以及炎症性和风湿病学的那些定药的最新进展。我们研究了性二态效应对年代疗法的影响,即根据昼夜节律的治疗,以减少不良事件和/或提高功效。我们进一步分析了新分子时钟剂的当前发育状况及其对年代疗法的承诺。
糖尿病是一种以高血糖为特征的慢性疾病,分为两种主要类型:1型和2型。2型糖尿病(T2D)约占所有被诊断的糖尿病病例的95%,其患病率在全球范围内增加(Ong等,2023)。T2D的特征症状是口渴,经常感染和体重减轻。此外,T2D会导致外周循环,心血管疾病,肾衰竭,甚至死亡,如果不进行治疗,T2D(Chatterjee等,2017)。然而,由于高血糖向T2D的进展缓慢,许多病例仍无法诊断(Zheng等,2018)。此外,T2D基础的病理机制仍然复杂且不清楚。各种环境因素,包括昼夜节律,驱动T2D发病机理和进展。越来越多的研究表明,昼夜节律中断(例如旋转工作变化和喷气滞后)之间存在关联,以及T2D的高流行率(Pan等,2011; Onaolapo和Onaolapo,2018; Gao等,2020)。昼夜节律是
植物是无柄生物,已经获得了高度塑料发育策略以适应环境。在这些过程中,口腔过渡对于确保生殖成功至关重要,并且受到多个内部和外部遗传网络的最终调节。控制植物对白天长度的响应的光周期途径是控制流动的最重要的途径之一。在ara-bidopsis光周期旋转中,constans(CO)是中心基因,它在漫长的一天结束时在叶片中激活了叶片开花基因座t(ft)的表达。昼夜节律强烈地表达了CO的表达。迄今为止,尚无关于从光周期途径回到昼夜节律的反馈回路的证据。使用转录网络,我们确定了相关的网络图案,可以调节昼夜节律之间的相互作用。基因表达,染色质免疫沉淀实验和表型分析使我们能够阐明CO在昼夜节律中的作用。植物具有改变的CO表达的植物显示出不同的内部时钟周期,通过每日叶子节奏运动来衡量。我们表明,通过与启动子上的特定位点结合,CO上调了与昼夜节律时钟相关的关键基因的表达,例如CCA1,LHY,PRR5和GI。CO上的大量PRR5抑制靶基因上调,这可以解释COCo-Prr5复合物与BZIP转录因子HY5相互作用,并有助于将复合物定位在时钟基因的启动子中。总而言之,我们的结果表明,可能有一个反馈循环,可以在其中将循环回到昼夜节律时钟,从而为昼夜节律提供了季节性信息。
结果:较短的睡眠饲养者占32.25±6.99岁的212名护士的61.8%。异常的社交喷气行。与正常的喷气lag组相比,经历异常社交喷气lag的群体表现出明显较低的早晨情感和更高的夜晚(EV)(分别为p = 0.003和p = 0.004)。dm风险占全体6.6%。在年龄较大,工作经验较长的人,较高的体重指数(BMI),男性性别和较低的EV评分中观察到DM的较高风险(P <0.001,P <0.001,P <0.001,P <0.001,P = 0.006和P = 0.042)。独特的得分与DM风险评分呈正相关(r = 0.168; p = 0.014),而它们与夜班计数成反比(r = -0.149; p = 0.022)。BMI的较高值(优势比= 1.255; 95%置信区间= 1.036-1.520; P = 0.020)和男性性别(优势比= 7.350; 95%置信区间= 1.265-42,161; p = 0.026)与DM的风险增加有关。
免疫系统是为了抵消不可预测的威胁,但它依靠可预测的活动周期来正常运行。免疫功能中的每日节奏是一个不断扩展的研究领域,许多人源自基于遗传的计时机制,称为昼夜节律。挑战是如何利用这些生物节奏来改善医疗干预措施。在这里,我们回顾了最近的文献,记录了昼夜节律如何组织基本的先天和适应性免疫活动,昼夜节律的免疫学后果和睡眠破坏以及该领域的知识差距。然后,我们考虑将昼夜节律与疫苗接种联系起来的证据,这是免疫功能的重要临床实现。最后,我们讨论了将昼夜节律免疫转换为患者床边的实用步骤。
5美国北卡罗来纳州达勒姆大学杜克大学神经生物学系6位精神病学和行为科学系,杜克大学,杜克大学,美国北卡罗来纳州达勒姆市7 7,美国北卡罗来纳州杜克大学,北卡罗来纳州杜克大学,美国8号,美国北卡罗来纳州达勒姆大学8 NEUROSURGUER,NEUROSURGE美国加利福尼亚州圣地亚哥的Pharmaceuticals,美国11号病理学系,美国北卡罗来纳州达勒姆大学杜克大学。