电信电路Murray Wyma客户技术经理Enatel Christchurch,新西兰摘要如果电池无法绊倒负载破坏者,则由于短路事件,整个站点可能会变黑。在安全的电信中通常需要高9s的可靠性,这是不可接受的。随着锂离子电池的出现及其固有的电池管理系统(BMS),在电信电路中应用时,重要的是要了解它们的特性。已经在锂离子电池上进行了短路测试,以确定其触发负载断路器与电池断路器本身的能力,而不是内部BMS。本文提交了实际的实验结果,显示了各种电路排列中短路电流的示波器痕迹。对于行业而言,了解这些反应,断路器的响应速度以及可以何种水平断路器选择性(如果有的话),包括锂离子BMS模块的响应速度,这将非常有价值。简介电信电路通常由直接与电池和负载电路并行连接的整流器组成,如下图所示:
抽象体验单个严重的压力源足以驱动性二态精神病的发展。腹侧下调(VSUB)作为一个部位出现,由于其性别特定的组织和在压力整合中的关键作用,压力可能引起性二态适应性。使用1小时的急性约束应力模型,我们发现应力导致女性VSUB活性的净减少,而女性有效,持久且由肾上腺素能受体信号传导驱动。相比之下,雄性表现出VSUB活性的净增加,该活动是瞬时和由皮质酮信号传导驱动的。我们进一步确定了VSUB输出的性别依赖性变化,以响应压力,并响应压力而焦虑行为。这些发现揭示了与性,细胞类型和突触特异性压力后,与精神疾病相关的大脑区域和行为发生了惊人的变化,这有助于我们理解性依赖性适应,这可能会影响与压力有关的精神病风险。突出显示
目前许多基因工程治疗方法的一个显著限制是它们对治疗效果的强度、时间或细胞环境的控制有限。合成基因/基因电路是一种合成生物学方法,可以控制特定 DNA、RNA 或蛋白质的生成、转化或消耗,并提供对基因表达和细胞行为的精确控制。它们可以通过仔细选择启动子、阻遏物和其他遗传成分来设计执行逻辑操作。在 Espacenet 中进行了专利搜索,结果选出 38 项专利,其中有 15 个最常见的国际分类。专利实施方案被分类为治疗分子的递送、传染病的治疗、癌症的治疗、出血的治疗和代谢紊乱的治疗。所选基因电路的逻辑门被描述以全面展示它们的治疗应用。合成基因电路可以定制以精确控制治疗干预,从而实现针对个体患者需求的个性化治疗,提高治疗效果并最大限度地减少副作用。它们可以是高度灵敏的生物传感器,通过精确监测各种生物标志物或病原体并适当合成治疗分子来提供实时治疗。合成基因电路还可能导致开发先进的再生疗法和可植入的生物装置,这些装置可按需产生生物活性分子。然而,这项技术面临着商业盈利能力的挑战。基因电路设计需要针对特定应用进行调整,并且可能存在多种调节剂毒性、同源重组、上下文依赖性、资源过度使用和环境多变性等缺点。
您需要登录或创建帐户才能获得或声明访问权限。可用主题包括: 与二极管相关的额外主题 与 JFET 和 GaAs 器件和电路相关的额外主题 与有用的晶体管配对相关的额外主题 与输出级和功率放大器相关的额外主题 与内部运算放大器电路相关的额外主题 与滤波器和调谐放大器相关的额外主题 与波形生成和整形相关的额外主题 与双极数字集成电路相关的额外主题 与 MOS 数字集成电路相关的额外主题 要访问内容或兑换资源,用户必须登录或创建帐户。所提供的文本涵盖了与电子和数字设计相关的各种主题,包括双极结型晶体管 (BJT)、MOS 场效应晶体管 (MOSFET)、放大器、运算放大器电路、CMOS 数字逻辑电路和 VLSI 制造技术。重点关注领域包括集成电路放大器的构建模块、差分和多级放大器、输出级和功率放大器、运算放大器电路、CMOS 数字逻辑电路以及数字设计原理(例如功率、速度和面积)。文本还涉及 SPICE 设备模型、仿真示例和双端口网络参数。此外,它还涵盖了采用 CMOS 和双极工艺制造的 IC 设备的标准电阻值、单位前缀、典型参数值,并提供了所选问题的答案。
神经元突触是神经回路中的专门连接,构成了神经元之间信息传递的部位。在任何时候形成,维护和重组等突触中的动态结构变化是特征的特征,一组称为突触组织者的分子在此过程中起着重要作用。这些过程的破坏与所谓的“突触疾病”有关的各种神经系统和精神疾病有关。据报道,据报道,细胞粘附型突触组织者,神经素和神经素(NRX)会通过多种酶进行依次的蛋白水解裂解,并在突触形成和维护上作用于抑制性效应(suzuki et and neuron et al and al。 突触的另一种动态变化是,新的突触组织者的快速突触形成和成熟,是细胞外支架粘附型突触组织者(ESP:ESPS:细胞外支架蛋白),例如CBLN1(例如CBLN1),例如同时粘合到前nrxs和Glutsnapticsnapticepe delta-papta-symapticapicsicpai-luttapicepentapai-luttapicepepean-tepa- 将CBLN1的功能扩展为通用兴奋性突触连接器神经元五生型1(NPTX1),将与AMPA型谷氨酰胺受体(GLUAS)结合的ESP与CBLN1融合,并根据结构信息设计了人工突触连接器CPTX。 CPTX给小脑共济失调,阿尔茨海默氏病和脊髓损伤的小鼠模型的给药表明,通过快速诱导突触形成的行为异常改善了行为异常(Suzuki等,Science 69(6507):69(6507):EABBB4853(202020))。据报道,据报道,细胞粘附型突触组织者,神经素和神经素(NRX)会通过多种酶进行依次的蛋白水解裂解,并在突触形成和维护上作用于抑制性效应(suzuki et and neuron et al and al。 突触的另一种动态变化是,新的突触组织者的快速突触形成和成熟,是细胞外支架粘附型突触组织者(ESP:ESPS:细胞外支架蛋白),例如CBLN1(例如CBLN1),例如同时粘合到前nrxs和Glutsnapticsnapticepe delta-papta-symapticapicsicpai-luttapicepentapai-luttapicepepean-tepa- 将CBLN1的功能扩展为通用兴奋性突触连接器神经元五生型1(NPTX1),将与AMPA型谷氨酰胺受体(GLUAS)结合的ESP与CBLN1融合,并根据结构信息设计了人工突触连接器CPTX。 CPTX给小脑共济失调,阿尔茨海默氏病和脊髓损伤的小鼠模型的给药表明,通过快速诱导突触形成的行为异常改善了行为异常(Suzuki等,Science 69(6507):69(6507):EABBB4853(202020))。据报道,据报道,细胞粘附型突触组织者,神经素和神经素(NRX)会通过多种酶进行依次的蛋白水解裂解,并在突触形成和维护上作用于抑制性效应(suzuki et and neuron et al and al。突触的另一种动态变化是,新的突触组织者的快速突触形成和成熟,是细胞外支架粘附型突触组织者(ESP:ESPS:细胞外支架蛋白),例如CBLN1(例如CBLN1),例如同时粘合到前nrxs和Glutsnapticsnapticepe delta-papta-symapticapicsicpai-luttapicepentapai-luttapicepepean-tepa-将CBLN1的功能扩展为通用兴奋性突触连接器神经元五生型1(NPTX1),将与AMPA型谷氨酰胺受体(GLUAS)结合的ESP与CBLN1融合,并根据结构信息设计了人工突触连接器CPTX。CPTX给小脑共济失调,阿尔茨海默氏病和脊髓损伤的小鼠模型的给药表明,通过快速诱导突触形成的行为异常改善了行为异常(Suzuki等,Science 69(6507):69(6507):EABBB4853(202020))。我们正在进一步研究突触分子和粘合剂的结构,以开发下一代突触连接器。在本次研讨会中,我还将讨论基于结构信息和使用Cryo-EM/ET的原位结构分析以及
量子模拟模仿一个量子系统与另一个人工组织的量子系统(即量子模拟器)的演化[1]。具有量子比特的数字量子模拟器可以对由各种粒子(如自旋、费米子和玻色子)组成的任意量子系统进行精确或近似编码,具体取决于粒子的性质。量子比特可以通过多种物理系统实现,如捕获离子[2,3]、核磁共振(NMR)[4,5]、超导电路[6,7]、量子点[8]和光子[9]。因此,无论模拟器的物理性质如何,我们都可以使用适当的量子比特编码协议用数字量子模拟器模拟任何量子系统。在各种多粒子量子系统中,玻色子系统被认为从数字量子模拟中受益匪浅。 Knill、Laflamme 和 Milburn (KLM) 证明后选择线性光学能够进行通用量子计算 [10]。此外,Aaronson 和 Arkhipov [11] 提出的玻色子采样也是证明量子器件计算优越性的有力候选者。玻色子采样问题被认为属于经典的难采样问题。受非相互作用玻色子系统计算能力的启发,提出了几种玻色子到量子比特编码 (B2QE) 协议,以使用数字量子计算机模拟玻色子问题 [12-18]。大多数研究直接使用 Fock 态的一元或二元量子比特表示作为量子比特编码协议,将玻色子产生和湮灭算子离散化。参考文献 [15] 提出了一种用于线性和非线性光学元件的数字量子模拟方法。参考文献[ 17 ] 基于文献 [ 19 ] 开发的玻色子-量子比特映射,使用 IBM Quantum 模拟了束分裂和压缩算子。所需资源(例如量子比特和门的数量)因编码协议而异。文献 [ 18 ] 比较了不同编码协议之间的资源效率。在本文中,我们结合 Shchesnovich [ 20 ] 分析的玻色子-费米子对应关系和费米子到量子比特编码 (F2QE) 协议 [ 21 , 22 ],提出了一种替代的多玻色子数字模拟方法。具体而言,我们的协议将玻色子态转换为具有内部自由度的费米子态,然后通过 F2QE 协议(Jordan-Wigner (JW) 变换)将其转换为量子比特态。在我们的模拟模型中,具有 M 个 N 量子比特束的量子电路可以模拟 M 模式下 N 个玻色子的数量守恒散射过程。我们的协议总结如图 1 所示。我们的协议最显著的优势是,它可以使用量子比特数的直接扩展来有效地模拟非理想的部分可区分玻色子,即具有内部自由度的玻色子。作为概念证明,我们使用我们的协议生成了 Hong-Ou-Mandel (HOM) 倾角 [ 23 ]。HOM 效应在光量子系统中非常重要,它为线性光量子计算系统中的逻辑门提供基本资源。参考文献 [ 24 ] 讨论了 HOM 效应与基于量子比特的 SWAP 测试之间的正式联系。为了模拟 HOM 倾角,我们需要一种方法来为光子添加内部自由度。在我们的例子中,通过将量子比特数增加两倍就可以轻松实现,这表明我们的协议适合模拟部分可区分的玻色子。我们使用 IBM Quantum 和 IonQ 云服务验证了电路的有效性。本文结构如下:第 2 部分介绍我们的数字玻色子模拟协议。在回顾了玻色子-费米子变换协议之后,我们展示了如何将此变换与 JW 变换相结合进行数字玻色子模拟。在第 3 部分中,我们将模型应用于 HOM 倾角实验。我们用一个八量子比特电路模拟双光子部分区分性。最后,第 4 部分总结我们目前的工作并讨论其未来可能的扩展。
要实现在治疗应用中工程细胞的潜力,必须在治疗功效窗口内表达转基因。拷贝数和其他外在噪声来源的差异会在转基因表达中产生方差,并限制合成基因回路的性能。在治疗背景下,转基因的超生理表达可以损害工程表型并导致毒性。为了确保狭窄的转基因表达范围,我们设计和表征了co mpact m icrornam-iparna-iSage(命令)(命令),一个单移,基于microRNA的不相互分的前馈回路。我们通过实验调整命令输出配置文件,并为系统建模以探索其他调整策略。通过将命令与两基因实现进行比较,我们强调了单转录体系结构提供的精确控制,尤其是在相对较低的副本编号下。我们表明,指令严格调节慢病毒的转基因表达,并精确控制原代人T细胞,原代大鼠神经元,原代小鼠胚胎成纤维细胞和人类诱导的多能干细胞的表达。最后,命令有效地设置了狭窄窗口中临床相关的转基因FMRP1和FXN的水平。一起,命令是一种紧凑的工具,非常适合精确指定治疗货物的表达。
光学通信集成电路的设计涉及各种技术,以提高性能,鲁棒性和功率效率。本文讨论了使用不同拓扑结构的无电感器,可变带宽和功率可观的光接收器前端的发展。它突出了校准时钟和数据恢复系统以最大程度地减少能息影响的重要性。该设计还提出了在65 nm CMOS工艺中制造的高增益宽带逆变器的cascode变速器放大器。多个带宽增强技术用于改善放大器的性能。此外,本文提出了一种低功率医疗设备和高通用性电子设备,该设备几乎没有功耗。20-Gb/s时钟和数据恢复电路的设计结合了用于低功率耗散的高速操作的注射锁定技术。频率监控机制可确保VCO固有频率和数据速率之间的密切匹配。此外,该文章介绍了在0.13 UM CMOS过程中制造的10 GB/S爆发模式变速器放大器(BMTIA),该过程已用于被动光网(PONS)中的爆发模式接收器。SIGE BICMOS中155-MB/S-4.25-GB/S激光驱动器的设计可在具有分段的驱动器切片方案的广泛调制电流上保持动态性能。CDR IC具有添加的Demux功能,并在尖端生产技术中实现。通过引用有关该主题的著名论文和书籍,讨论了硅光子学的最新进展。B.最后,本文讨论了CMOS光学收发器的设计,该收发器符合IEEE802.3AH PX20标准的规格,并在/SPL PlusMn/0.4 DBM和/splplusmn/0.6 db中成功抑制了宽度从-40到100/spl spl deg/c/c。第一本关于可编程光子学的全面书籍提供了对基本原理,架构和潜在应用的深入概述。几项重要的研究表明,用于深度学习,量子信息处理和其他用途的大规模可编程光子电路。最近的一项研究提出了基于氮化硅波导的8×8可编程量子光子处理器,表现出低光损失,对单个光子上的线性量子操作有吸引力(Taballione等,2018)。这项成就引发了人们兴趣探索可编程光子电路处理微波信号的功能。研究人员在开发通用离散的傅立叶光子光子集成电路架构(Hall&Hasan,2016),玻璃芯片上可重构的光子学(Dyakonov等,2018)和光学处理器实现的神经网络(Shokraneh等人,2019年)方面取得了重大进展。这些进步为创新应用打开了大门,例如具有DSP级灵活性和MHz波段选择性的光子RF过滤器(Xie等,2017)。大规模硅量子光子学的发展也使实施了任意的两Q量处理(Qiang et al。,2018)和具有集成光学的多维量子纠缠(Wang等,2018)。pai,S。等。IEEE J. SEL。IEEE J. SEL。此外,还使用可重构光子电路来生成,操纵和测量纠缠和混合物(Shadbolt等,2012)。此外,研究的重点是使用纯正的可编程网格(Annoni等,2017)进行解散光,并实施了综合透明检测器,这些透明检测器可以测量光强度而不诱导额外的光损失。这些可编程光子电路中的这些进步为量子计算,电信及以后的创新应用铺平了道路。任意前馈光子网络的并行编程。顶部。量子电子。25,6100813(2020)。 Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。25,6100813(2020)。Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Reck,M.,Zeilinger,A.,Bernstein,H。J.&Bertani,P。任何离散统一操作员的实验实现。物理。修订版Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Lett。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。&Bogaerts,W。耐受性,宽带可调2×2耦合器电路。选择。Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E.使用双驱动方向耦合器的集成光子可调基本单元。选择。Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A.&Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。J.光。技术。38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。38,723–735(2020)。插图广告Google Scholar Miller,D。A.J. Opt。Soc。B.使用自配置网络分析和生成多模光场。Optica 7,794–801(2020)。插图广告Google Scholar Morizur,J.-F。等。可编程的统一空间模式操作。am。A 27,2524(2010)。插图广告Google Scholar Labroille,G。等。基于多平面光转换的高效和模式选择性空间模式多路复用器。选择。Express 22,15599–15607(2014)。饰物ADS PubMed Google Scholar Tanomura,R.,Tang,R.,Ghosh,S.,Tanemura,T。&Nakano,T。使用多层方向耦合器使用多层方向性耦合器。J.光。技术。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A. B. 设置干涉仪的网格 - 反向局部光干扰方法。 选择。 Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。 校准和量子光子芯片的高保真度测量。 新J. Phys。 15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A.B.设置干涉仪的网格 - 反向局部光干扰方法。选择。Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。校准和量子光子芯片的高保真度测量。新J. Phys。15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。15,063017(2013)。插图广告Google Scholar Cong,G。等。通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。选择。Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。多功能硅光子信号处理器核心。nat。社区。8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。8,1–9(2017)。此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。单层整合的多层硅二硅硅波导平台的最新进展已使三维光子电路和设备的开发(Sacher等,2018)。AIM Photonics MPW已成为一种高度可访问的技术,用于快速的光子综合电路(Wahrenkopf等,2019)。此外,具有紧凑的平面耦合器,跨言式缓解和低跨界损失的多平面无定形硅光子的发展进一步扩大了光子整合电路的能力(Chiles等,2017)。在热控制方面,已经提出了对硅光子电路的热控制的各种加热器架构,包括用于CMOS兼容的硅热硅热电器(Van Campenhout等,2010)的NISI波导加热器(Van Campenhout等,2010),并取消热跨与光的跨核电效应,对光电综合通道效应(MilanizaDeh et al。)。电流效应也在硅中进行了研究,并在光学调节剂中进行了重要应用(Reed等,2010)。此外,用于集成光子学的硅氧核平台的开发使创建具有降低光学损失的光子设备(Memon等,2020)。压电调谐的氮气环谐振器也已被证明,并具有潜在的光子整合电路中的应用(Jin等,2018)。此外,使用压电铅锆钛酸钛酸盐(PZT)薄膜开发了应力调节剂,从而可以创建可调光子设备(Hosseini等,2015)。Wuttig等。派兰多·赫兰兹(Errando-Herranz)等。Quack等。使用液晶壁板还可以广泛调整硅在隔离器环谐振器中,并具有潜在的光子整合电路中的应用(De Cort等,2011)。此外,使用具有液晶浸润的SOI插槽波导开发了数字控制的相变,从而可以创建可调光子设备(Xing等,2015)。最后,在硅硅酸盐和纳米结构的钛酸钡中已证明了大型的效应,并在光子综合电路中具有潜在的应用(Abel等,2019)。开发了用于非易失性光子应用的相变材料。研究了启用MEMS的硅光子集成设备和电路。研究了启用了MEMS硅光子集成设备和电路的性能。通过通用可编程光子电路降低原型光子应用的成本是一个不断增长的领域。几项研究探索了这些电路在各个领域的潜力,包括硅光子系统和IIII-V-ON-ON-ON-ON-ON-ON-ON-ONICON整合。研究人员一直在开发技术,例如用于控制大型硅光子电路的热光相变,以及用于硅光子平台中高速光学互连的活性组件。这些进步可能有可能使创建更有效,更可扩展的光子系统。此外,研究还研究了III-V材料在硅底物上的整合,这可能会导致改善的性能和降低光子学应用的成本。研究人员还一直在探索通过创新来提高光学互连效率的方法,例如基于转移打印的III-V-n-Silicon分布式反馈激光器的集成。最近的工作集中在开发可编程的光子电路上,这些电路可以针对不同的应用进行重新配置,从而有可能减少原型制作所需的成本和时间。这些电路可用于各种光子系统,从高速光学互连到量子技术。还研究了这些发展的经济可行性,研究人员探索了通过使用通用可编程光子电路来降低成本的方法。此外,一些研究已经深入研究了新的应用,例如全光信号处理和光学证明,突出了各个领域的光子学的巨大潜力。改写文本:对光子相关的研究论文的调查和来自信誉良好的来源的文章揭示了对微波信号处理的可编程光子组件的重视。值得注意的是,最近的研究集中在使用集成波导网格的可重构光学延迟线和真实时延迟线的发展。此外,人们对无线电纤维技术,激光雷达系统体系结构和量子计算应用的兴趣越来越大。光子学与其他技术的整合已导致在诸如光谱传感,激光多普勒振动法和光束束成形和转向等领域的显着进步。尽管最初令人兴奋,但身体和经济因素阻碍了进步。此外,对光子生物传感器,硅光子电路和六束同伴激光多普勒振动的研究表明,在各种应用中的准确性和效率提高了潜力。最近的研究还强调了可编程超导处理器和量子机学习算法的重要性。已经探索了使用集成波导网格的可重构光学延迟线和真实时延迟线的开发,重点是提高信号处理能力。用于光谱传感的硅光子电路和六光同源性激光多普勒振动法在各种应用中显示出令人鼓舞的结果。量子计算研究继续前进,最近的研究表明使用可编程超导处理器进行量子至上。光子学与其他技术的集成为改进信号处理,传感和计算功能开辟了新的可能性。Ivan P. Kaminow的2008年Lightwave Technology Journal of Lightwave Technology文章重点介绍了自1969年以来光学综合电路的希望。最近的商业发展可能标志着光子摩尔定律曲线的开始。关键里程碑包括从可见的LED到III-V光子综合电路(图片)的过渡。审查了显着的进步,例如大规模INP发射器和接收器图片,速度高达500 GB/s和1 TB/s。此外,自从CMOS晶圆晶片级集成以来,硅光子电路包装已显着改善。专家通过通用的基础方法预测了微型和纳米光子学的革命,与三十年前的微电子中类似创新的影响相呼应。硅光子学有望为从电信到生物医学领域的各种应用提供低成本的光电溶液。
我们在电路级噪声模型下模拟了表面代码中的逻辑Hadamard门,将其汇总到方格连接硬件上的物理电路中。我们的论文是第一个在量子错误校正代码上使用逻辑统一门这样做的。我们通过斑块变形考虑两个建议:一个应用横向hadamard门的提案(即整个域壁贯穿了时间),以互换逻辑X和Z字符串,另一个将域壁应用于空间以实现此互换的情况。我们详细解释了为什么他们通过跟踪稳定器和逻辑运算符在每个Quantum误差校正回合中如何转换稳定器和逻辑运算符来执行逻辑Hadamard门。我们优化了物理电路并评估它们的逻辑故障概率,我们发现与相同数量的量子误差校正回合的量子记忆实验相当。我们提出了综合征 - 萃取电路,在电路级别噪声下与现象学噪声保持相同的效率距离。我们还解释了如何将交换-Quantum-error-or校正回合(要求将贴片返回其初始位置),只能将其编译为仅四个两倍的栅极层。这可以应用于更一般的方案,作为副产品,它可以从第一原则中解释如何如何构建Google Paper [1]的“步进”电路。