教学大纲 模块一 生物材料-定义-分类-金属-陶瓷-聚合物,复合材料-来源,应用,优点和局限性 [6] 模块二:金属和合金-不锈钢,CO 基合金,钛和钛基合金和牙科金属的腐蚀和治疗,陶瓷-氧化铝,磷酸钙,玻璃-陶瓷,碳的制造和物理性质,陶瓷的劣化 [10] 模块三 聚合物植入材料-聚酰胺,PE,PP,聚丙烯酸酯,生物材料的结构,性质和应用-蛋白质,多糖,组织的结构和性质关系-矿化组织,富含胶原蛋白的组织和弹性组织 [8] 模块四 软组织替代品-皮肤植入物-缝合线,组织粘合剂,经皮装置,人造皮肤,颌面植入物,耳和眼植入物,血管植入物,心肺辅助装置,人工肾透析膜 [8]模块 V 硬组织替代物——长骨修复——金属丝、针、螺钉、骨折板、牙种植体、关节置换——膝关节和髋关节——结构材料、局限性 [8]
- 法国国家科学研究院研究助理 (1978-1982) - 法国国家科学研究院研究员 (1982-1988) - 加州大学伯克利分校博士后 (1983-1984) - 法国国家科学研究院 II 研究主任 (1988-1995) - 巴黎综合理工学院教授 (1991-2003) - 法国国家科学研究院 I 研究主任 (1995-2006) - 法国国家科学研究院优秀班研究主任 (2006-2011) - 凝聚态化学实验室主任 (1999-2013) - 巴黎凝聚态化学实验室 UMR CNRS 7574 联合主任 (2000-2004) - 巴黎凝聚态化学实验室主任 UMR CNRS 7574 (2005-2013) - 法国学院教授、法国凝聚态化学主席混合材料化学 » (2011--2020) - 美国高等研究院教授、斯特拉斯堡大学高等研究院超分裂物质化学系主任 (2019---) - 波尔多大学特邀教授 (2021---) 国家科学和行政职责
摘要简介:光电(也称为外部老化)是皮肤的过早老化,这是由于长时间和反复暴露于太阳辐射而导致的。光丹的变化与年代老化(称为固有或程序性衰老)引起的变化重叠,并负责与皮肤外观年龄相关的大多数特征。光照的突出临床特征包括薄和厚实的皱纹,散发和弹性丧失。可以通过适当的防晒和各种规定的药物来部分预防和逆转光门。但是,对光学的担忧主要是化妆品,并且受地理差异,文化和个人价值观的影响。目标:讨论光学的临床方面。方法论:从2024年1月至4月,来自Scielo,PubMed和BVS的科学数据库的综合文献综述,描述符“光学”和“临床方面”。包括1990 - 2024年的文章(总计109),完整读取05篇文章。结果和讨论:光照的临床迹象包括皱纹,凸耳,色素沉着,放光色素的角化病,透明度和弹性的丧失,弹性和疾病质地。防晒,包括防晒和使用防晒霜和防晒服,是防止光泽的第一道防线。可以在我们建议定期使用广泛的太阳能保护剂,以防止想要防止过早皮肤衰老的患者提供防止紫外线A(UVA)和紫外线B(UVB)辐射。建议使用所有皮肤类型的个体,特别是对于那些居住在太阳辐射量高的地区的人(光型I,II和III)的使用。我们建议为希望获得光化治疗的患者进行局部类维生素类动物,例如第一次疗法。我们更喜欢局部维甲酸,而不是其他类维生素,因为它是研究最广泛的药物,并且以多种浓度提供。局部维甲酸可用于所有皮肤原型的患者中的轻度至重度光泽。每两天使用每两天使用每两天使用每两天的维甲酸或0.025%的局部乳膏或0.025%的凝胶,这是常见的初始制度。
人们很少最终成为他们想像的职业。但是丽莎·克莱因(Lisa C. Klein)不像大多数人。“我告诉我的一年级老师,我将成为一名工程师很多年后,当我再次遇到她时,她说:‘好吧,你做了什么?您成为工程师吗?实际上,我有尽管克莱因的父母都不是工程师,但她长大后就非常重视科学。美国和苏联之间的太空竞赛在全国范围内开展了讨论和资助科学的资金,而在离家较近的同时,克莱因的灵感来自于当地工业设施的实地考察,例如该地区主要雇主杜邦(Dupont)经营的商品化学工厂。克莱因最初获得了学士学位来自马萨诸塞州理工学院的冶金学中,但是在她在大学材料科学系的研究生研究期间,她发现了对陶瓷和玻璃的热情,特别是对这些材料的Sol-Gel处理。“我正在制作一个不容易制作的玻璃成分这是一种铝硅酸盐,”克莱因说“ Rustum Roy在谈论Sol-Gel过程时写了一张纸,我想,‘哦,这可能会使获得统一的玻璃更容易'”克莱因(Klein)对实验室好奇心的兴趣已演变为250多个同行审查的出版物,专利,书籍章节以及有关Sol-Gel Processing和其他相关玻璃主题的编辑她的开创性努力在Acers年会上展出现在,她被广泛认为是Sol-Gel科学和工程领域的领先专家,尤其是用于电解质,电解质,膜,膜和纳米复合材料的应用。
在致癌基因依赖的非小细胞肺癌 (NSCLC) 中识别出可操作靶点推动了以生物标志物为导向的策略,尤其是在晚期疾病中。尽管分子靶向疗法取得了不可否认的成功,但临床反应持续时间相对较短。虽然人们付出了巨大的努力,在基因层面上定义了肿瘤结构和克隆进化的复杂性,但人们对癌症在治疗过程中参与的表型适应的动态机制并没有给予同等的关注。在临床层面,EGFR 突变和 ALK 重排肿瘤的分子靶向治疗通常会导致上皮间质转化 (EMT) 和原始腺癌的组织学转化,而不会获得额外的遗传病变,从而限制了后续的治疗选择和患者结果。在这里,我们概述了目前对控制这种现象的遗传和非遗传分子回路的理解,并介绍了干扰肺癌细胞可塑性的当前策略和潜在的创新治疗方法。
https://classic.clinicaltrials.gov/ct2/show/NCT05563220 C4891023 TACTIVE-U:一项介入安全性和有效性 1b/2 期开放标签伞状研究,旨在研究 arv-471(pf-07850327)的耐受性、pk 和抗肿瘤活性,arv-471(一种口服蛋白水解靶向嵌合体)与其他抗癌治疗联合用于 18 岁及以上的 er+ 晚期或转移性乳腺癌患者:子研究 a-c4891006(arv-471 与 abemaciclib 联合使用)和子研究 bc4891023(arv-471 与 ribociclib 联合使用)
摘要:基于氯化物的固体电解质是由于其高LI +离子电导率和与高压氧化物阴极的全溶剂锂电池相关的材料而引人入胜的材料。然而,这些材料的主要示例仅限于三价金属(例如SC,Y和IN),这些金属价格昂贵且稀缺。在这里,我们通过用二二元和四价金属(例如Mg 2+和Zr 4+)代替三价金属来扩展这种材料家族。我们合成李2 mg 1/3 zr 1/3 cl 4在尖晶石晶体结构中,并将其性质与先前报道的高性能LI 2 SC 2/3 Cl 4进行比较。我们发现Li 2 mg 1/3 Zr 1/3 cl 4的离子电导率较低(在30°C时为0.028 ms/cm),比同构结构LI 2 SC 2/3 Cl 4(30°C时1.6 ms/cm)。我们将这种差异归因于Mg 2+和Zr 4+在LI 2 mg 1/3 Zr 1/3 Cl 4中的无序排列,这可能会阻止LI+迁移途径。但是,我们表明,Li 2 -Z Mg 1 - 3 Z /2 Zr Z Cl 4之间的Aliovalent取代在Li 2 MgCl 4和Li 2 Zrcl 6之间可以提高离子电导率,而ZR 4+含量的增加,可能是由于引入了Li +空位。这项工作为基于卤化物的固体电解质打开了一个新的维度,从而加快了低成本固态电池的开发。■简介
该研究务实地设定了 2020 年的前景,作者正确地在当前正在部署的成熟技术和具有更多随机部署的未来技术之间选择了一个折中方案。对“时代精神”保持警惕确实是明智的。我们所处的政治媒体环境是即时性的。技术的发展已经有很长一段时间了。大多数情况下,从实验室层面的第一个积极结果到技术的部署需要数年时间。 TRL(技术准备水平)9个级别的存在提醒我们创新是一个漫长的过程。此外,许多行业的活动呈现出巨大的惯性:例如,住宅和第三级房地产存量的更新率约为 100 年。最后,创新技术的部署面临着该行业投资的压力。显然,技术部署策略必须整合这些不同的方面。