• 最近几周,几个国家的初级和二级护理就诊率表明,欧盟/欧洲经济区存在显著的呼吸道病毒活动。季节性流感和呼吸道合胞病毒 (RSV) 疫情正在持续,而 SARS-CoV-2 活动处于非常低的水平。 • 所有指标都表明,欧盟/欧洲经济区流感活动广泛且主要处于中等水平,大多数国家继续观察到检测阳性率的上升。目前,大多数国家因流感住院的人数与之前疫情高峰期的水平相当。众所周知,流感住院会给医疗保健系统带来巨大压力,并使医院容量紧张。45 岁及以上的人出现严重后果的风险最高,这凸显了继续采取有针对性的预防措施(例如接种疫苗)的必要性。 • 欧盟/欧洲经济区各地的 RSV 活动各不相同,一些国家已经度过了疫情高峰,而其他国家的检测阳性率继续上升。五岁以下儿童和 65 岁及以上人群中,因呼吸道合胞病毒而入院的人数仍然很高。• ECDC 在流行病学更新中发布了 2024/2025 年冬季应对措施建议。接种疫苗是预防更严重病毒性呼吸道疾病的最有效措施。鼓励符合接种条件的人接种疫苗,尤其是那些严重后果风险较高的人。应提醒临床医生,如有指征,早期使用抗病毒药物治疗流感可能会防止弱势群体病情发展为严重疾病。• 非药物干预措施,如经常洗手、保持身体距离和避免大型聚会,也有利于各国控制疫情。在流感季节高峰期,在医疗机构和长期医疗机构中佩戴口罩可以被视为减少向弱势群体传播的一种方式。
mantamonads被认为代表了真核生物树中的“孤儿”谱系,可能在真核生物根部最常假定的位置附近分支。最近的系统基因分析将它们与“ crums”超组的一部分以及胶状果糖和核纤维相同。这个超组似乎是在氨甲基底部分支的,这对于理解真核生物的深层进化历史至关重要。但是,缺乏代表性物种和与之相关的完整基因组数据阻碍了其生物学和进化的研究。在这里,我们隔离并描述了两种新的Mantamonads,Mantamonas vickermani sp。nov。和mantamonas sphyraenae sp。nov。,对于我们生成的转录组序列数据以及后者的高质量基因组。Sphyraenae基因组的估计尺寸为25 MB;我们的从头组装似乎是高度连续的,并具有9,416个预测的蛋白质编码基因。这个近染色体规模的基因组组装是CRUMS超级组的第一个描述。
1 加州大学伯克利分校分子与细胞生物学系;美国加利福尼亚州伯克利市;2 加州大学创新基因组学研究所;3 加州大学伯克利分校加州定量生物科学研究所 (QB3);4 加州大学伯克利分校霍华德休斯医学研究所;美国加利福尼亚州伯克利市;5 加州大学伯克利分校地球与行星科学系;6 加州大学洛杉矶分校分子、细胞和发育生物学系;7 加州大学伯克利分校计算生物学中心;8 加州大学洛杉矶分校霍华德休斯医学研究所;9 格拉德斯通研究所;美国加利福尼亚州旧金山市;10 格拉德斯通-加州大学旧金山分校基因组免疫学研究所; 11 劳伦斯伯克利国家实验室分子生物物理和综合生物成像部;美国加利福尼亚州伯克利市;12 加利福尼亚大学伯克利分校化学系;美国加利福尼亚州伯克利市;
1 康奈尔大学微生物学系,纽约州伊萨卡 14853,美国 2 伍兹霍尔海洋研究所海洋化学和地球化学系,马萨诸塞州伍兹霍尔 02543,美国 3 佛罗里达大学土壤、水和生态系统科学系,佛罗里达州盖恩斯维尔 32611,美国 4 佛罗里达大学森林、渔业和测绘科学学院,佛罗里达州盖恩斯维尔 32611,美国 5 美属维尔京群岛大学海洋与环境研究中心,美属维尔京群岛圣托马斯 00802 6 南佛罗里达大学海洋科学学院,佛罗里达州圣彼得堡 33701,美国 7 美国地质调查局圣彼得堡海岸与海洋科学中心,佛罗里达州圣彼得堡 33701,美国 8 北伊利诺伊大学生物科学系,伊利诺伊州迪卡尔布 60115,美国 9 范霍尔·拉伦斯坦应用科学大学科学,8901 BV 吕伐登,荷兰 10 瓦赫宁根大学海洋动物生态学组,6708 PB 瓦赫宁根,荷兰 11 蒙大拿州立大学微生物学和细胞生物学系,博兹曼,MT 59717,美国 12 阿鲁巴国家公园基金会,圣克鲁斯,阿鲁巴岛
微病毒科 (Microviridae) 的小型环状单链 DNA 病毒在所有生态系统中都很普遍且多样。它们的基因组通常介于 4.3 到 6.3 kb 之间,最近从海洋 Alphaproteobacteria 中分离出的一种微病毒是已知的最小 DNA 噬菌体基因组(4.248 kb)。有人提出用一个亚科——Amoyvirinae——来对这种病毒以及其他相关的感染 Alphaproteobacteria 的噬菌体进行分类。本文,我们报告了在来自各种水生生态系统的宏组学数据集中发现的 16 个完整的微病毒基因组,它们的基因组明显小于(2.991-3.692 kb)已知的基因组。系统发育分析表明,这 16 个基因组代表两组相关但又截然不同的新型微病毒群——amoyvirus 是它们已知的最亲近的亲属。我们认为这些小型微病毒是两个暂时命名为 Reekeekeevirinae 和 Roodoo- doovirinae 的亚科的成员。由于已知的微病毒基因组编码了许多重叠和重印基因,而这些基因无法被基因预测软件识别,因此我们开发了一种新方法,根据蛋白质保守性、氨基酸组成和选择压力估计来识别所有基因。令人惊讶的是,每个基因组只能识别出四到五个基因,重印基因的数量低于 phiX174 中的基因。因此,这些小基因组往往具有较少的基因数量和较短的每个基因长度,从而没有留下可以容纳重印基因的可变基因区域的空间。更令人惊讶的是,这两个 Microviridae 组具有特定且不同的基因内容,以及其保守的蛋白质序列的巨大差异,突出表明这两组相关的小基因组微病毒使用非常不同的策略来用如此少的基因完成其生命周期。这些基因组的发现以及对其基因组内容的详细预测和注释,扩展了我们对自然界中ssDNA噬菌体的理解,也进一步证明了这些病毒在漫长的进化过程中探索了广泛的可能性。
1 科隆大学医学院和科隆大学医院病毒学研究所实验免疫学实验室;科隆 50931,德国 2 科隆大学生物物理研究所;科隆 50937,德国 3 弗里德里希-吕弗勒研究所诊断病毒学研究所,格赖夫斯瓦尔德 - 里姆斯岛,17493,德国 4 科隆大学医学院和科隆大学医院职业医学、环境医学和预防研究研究所及门诊部;科隆 50931,德国 5 德国感染研究中心(DZIF),波恩-科隆合作站点,科隆,德国 6 马克斯普朗克衰老生物学研究所 FACS 和成像核心设施,科隆 50931,德国 * 通讯作者。电子邮件:florian.klein@uk-koeln.de (FK);christoph.kreer@uk-koeln.de (CK) †这些作者对本作品的贡献相同。 ‡这些作者对本作品的贡献相同。
我们研究了1C进化枝中植物疫霉及其近亲的进化史。我们使用了来自1C进化枝中69个植物菌属分离株的整个基因组序列数据,并进行了一系列基因组分析,包括核苷酸介入性评估,最大似然树,网络评估,最新共同祖先和迁移分析的时间。我们始终确定了两种墨西哥植物疫霉菌的明显且后来的分歧,第1页。mirabilis和p。ipomoeae,来自p。Infestans和其他1C进化枝种。phytophthora Infestans与来自南美的其他1C进化枝种类表现出较新的分歧。Andina和p。 betacei。 在1C进化枝中的形成和p的演变。 Infestans发生在安第斯山脉中。 p。 Andina – p。 betacei – p。 Infestans形成了一个物种复合物,具有模糊的物种边界,物种之间的杂交以及与共同血统的短时间。 更重要的是,现代墨西哥和南美p之间的区别。 Infestans证明较少离散,表明随着时间的推移,人群之间的基因流动。 混合分析表明,这些人群之间存在复杂的关系,暗示了这些区域之间的潜在基因流动。 历史p。 从1845 - 1889年收集的 Infestans是第一个与所有其他p分歧的人。 Infestans人群。 现代南美人口下一步,墨西哥人口以后的血统。 Infestans。Andina和p。betacei。在1C进化枝中的形成和p的演变。Infestans发生在安第斯山脉中。p。Andina – p。 betacei – p。 Infestans形成了一个物种复合物,具有模糊的物种边界,物种之间的杂交以及与共同血统的短时间。 更重要的是,现代墨西哥和南美p之间的区别。 Infestans证明较少离散,表明随着时间的推移,人群之间的基因流动。 混合分析表明,这些人群之间存在复杂的关系,暗示了这些区域之间的潜在基因流动。 历史p。 从1845 - 1889年收集的 Infestans是第一个与所有其他p分歧的人。 Infestans人群。 现代南美人口下一步,墨西哥人口以后的血统。 Infestans。Andina – p。betacei – p。Infestans形成了一个物种复合物,具有模糊的物种边界,物种之间的杂交以及与共同血统的短时间。更重要的是,现代墨西哥和南美p之间的区别。Infestans证明较少离散,表明随着时间的推移,人群之间的基因流动。混合分析表明,这些人群之间存在复杂的关系,暗示了这些区域之间的潜在基因流动。历史p。Infestans是第一个与所有其他p分歧的人。Infestans人群。现代南美人口下一步,墨西哥人口以后的血统。Infestans。两个人群均来自历史p。基于p的发散时间。来自其最亲密的亲戚的Infestans,p。Andina和p。 Betacei在安第斯山脉地区,我们认为安第斯山脉是p的原产地。 Infestans,现代全球化有助于p之间的混合。 今天来自墨西哥,安第斯山脉和欧洲的人口。Andina和p。Betacei在安第斯山脉地区,我们认为安第斯山脉是p的原产地。 Infestans,现代全球化有助于p之间的混合。 今天来自墨西哥,安第斯山脉和欧洲的人口。Betacei在安第斯山脉地区,我们认为安第斯山脉是p的原产地。Infestans,现代全球化有助于p之间的混合。今天来自墨西哥,安第斯山脉和欧洲的人口。今天来自墨西哥,安第斯山脉和欧洲的人口。
使用MCMC算法的贝叶斯系统发育分析产生了以系统发育树和相关参数样本形式的系统发育树的poserior分布。树空间的高维度和非欧几里得性质使总结树空间中后验分布的核心趋势和方差复杂。在这里,我们介绍了一个可从树的后部样本构建的可构造的新的树木分布和相关的点估计器。通过模拟研究,我们表明,这一点估计器的性能也至少要比产生贝叶斯后摘要树的标准方法更好。我们还表明,执行最佳的摘要方法取决于样本量和以非平凡的方式的尺寸 - 问题。
I. 策略概述 APHIS 国家牛奶检测策略 (NMTS) 为奶牛中的 H5N1 进化枝 2.3.4.4b(以下简称“H5”)提供监测和应对指导。该策略的总体目标是消除美国奶牛中的 H5N1,并专注于检测奶牛群的散装牛奶。该策略目前适用于美国本土各州。根据各州的情况,该策略的各个阶段可能在全国范围内同时进行。每个阶段的采样方案都根据各州的资源和行业灵活制定。
背景:对于抗原可变病原体(例如流感),应变适应性部分取决于与其他菌株相比,宿主对感染感染的相对可用性。抗血凝素(HA)和神经氨酸酶(NA)的抗体赋予了对流感感染的实质性保护。我们询问横截面抗体衍生的估计值对不同流感促进核的种群易感性(H3N2)是否可以预测下季节的成功。方法:我们从2017年夏季从1至90岁的483个健康个体收集了血清,并使用焦点还原中和测试(FNRT)和酶连接的凝集素分析(Ella)分析了对代表性菌株的中和对HA和NA的反应。我们估计了循环病毒进化枝的相对人口平均水平和特定年龄的敏感性,并将这些估计值与随后的2017-18季节的进化枝频率变化进行了比较。结果:中和抗体滴度最低的进化枝,表明人口易感性更高,主导下一个季节。病毒菌株之间的效率相关性因年龄而异,表明与年龄相关的表位差异是由共同的过去暴露驱动的。但实质性的无法解释的变化仍然存在于年龄组内。结论:这项研究表明,人口免疫的代表性度量如何改善进化预测并为流感的选择性压力提供信息。