研究了使用两种方法合成的方解石样品的内部结晶度:溶液沉淀法和碳酸铵扩散法。扫描电子显微镜 (SEM) 分析表明,使用这两种方法沉淀的方解石产品具有明确的菱面体形状,与矿物的自形晶体习性一致。使用布拉格相干衍射成像 (BCDI) 表征这些方解石晶体的内部结构,以确定 3D 电子密度和原子位移场。使用碳酸铵扩散法合成的晶体的 BCDI 重建具有预期的自形形状,具有内部应变场和少量内部缺陷。相反,通过溶液沉淀合成的晶体具有非常复杂的外部形状和有缺陷的内部结构,呈现出零电子密度区域和明显的位移场分布。这些异质性被解释为由非经典结晶机制产生的多个结晶域,其中较小的纳米颗粒聚结成最终的自形颗粒。SEM、X 射线衍射 (XRD) 和 BCDI 的结合使用允许在结构上区分用不同方法生长的方解石晶体,为了解晶粒边界和内部缺陷如何改变方解石反应性提供了新的机会。
摘要:在过去的几十年里,太赫兹技术取得了长足的进步,这从当前太赫兹源和探测器的性能以及多种太赫兹应用的出现可以看出。然而,在量子技术领域,太赫兹光谱域仍处于起步阶段,不像近年来蓬勃发展的邻近光谱域。值得注意的是,在微波领域,超导量子比特目前是量子计算机的核心,而量子加密协议已通过卫星链路在可见光和电信领域成功演示。太赫兹领域在这些令人瞩目的进步中落后了。今天,太赫兹领域的当前差距显然与量子技术有关。尽管如此,在太赫兹频率下工作的量子技术的出现可能会产生重大影响。事实上,由于太赫兹辐射对大气扰动的敏感性较低,因此对于具有终极安全性的无线通信具有重大前景。此外,它还有可能提高固态量子比特的工作温度,从而有效解决现有的可扩展性问题。此外,太赫兹辐射可以操纵分子的量子态,这被认为是进行长距离相互作用的量子计算和模拟的新平台。最后,它穿透通常不透明材料的能力或其对瑞利散射的抵抗力对于量子传感来说是非常有吸引力的特性。从这个角度来看,我们将讨论潜在的
摘要 :在过去的几十年里,太赫兹技术取得了长足的进步,这从当前太赫兹源和探测器的性能以及多种太赫兹应用的出现可以看出。然而,在量子技术领域,太赫兹光谱域仍处于起步阶段,不像近年来蓬勃发展的邻近光谱域。值得注意的是,在微波领域,超导量子比特目前是量子计算机的核心,而量子加密协议已经通过卫星链路在可见光和电信领域成功演示。太赫兹领域在这些令人瞩目的进步中落后了。今天,太赫兹领域的当前差距显然与量子技术有关。尽管如此,在太赫兹频率下工作的量子技术的出现可能会产生重大影响。事实上,由于太赫兹辐射对大气扰动的敏感性低,因此它对具有终极安全性的无线通信具有重大前景。此外,它还有可能提高固态量子比特的工作温度,从而有效解决现有的可扩展性问题。此外,太赫兹辐射可以操纵分子的量子态,这被认为是进行长距离相互作用的量子计算和模拟的新平台。最后,它能够穿透通常不透明的材料,或者具有抗瑞利散射的能力,这些都是量子传感非常有吸引力的特性。从这个角度来看,我们将讨论潜在的
摘要 :在过去的几十年里,太赫兹技术取得了长足的进步,这从当前太赫兹源和探测器的性能以及多种太赫兹应用的出现可以看出。然而,在量子技术领域,太赫兹光谱域仍处于起步阶段,不像近年来蓬勃发展的邻近光谱域。值得注意的是,在微波领域,超导量子比特目前是量子计算机的核心,而量子加密协议已经通过卫星链路在可见光和电信领域成功演示。太赫兹领域在这些令人瞩目的进步中落后了。今天,太赫兹领域的当前差距显然与量子技术有关。尽管如此,在太赫兹频率下工作的量子技术的出现可能会产生重大影响。事实上,由于太赫兹辐射对大气扰动的敏感性低,因此它对具有终极安全性的无线通信具有重大前景。此外,它还有可能提高固态量子比特的工作温度,从而有效解决现有的可扩展性问题。此外,太赫兹辐射可以操纵分子的量子态,这被认为是进行长距离相互作用的量子计算和模拟的新平台。最后,它能够穿透通常不透明的材料,或者具有抗瑞利散射的能力,这些都是量子传感非常有吸引力的特性。从这个角度来看,我们将讨论潜在的
• 量子卫星将反过来支持地面量子网络,具有灵活的地理多样性和最少的新地面基础设施 • 提高美国学生群体的“量子素养”,重点是将女性和代表性不足的少数群体带入量子世界 • 我们有一个非常强大的实习生计划。
设计搜索空间的有效探索是组合优化算法设计中的关键挑战之一。在这里,我们介绍了生成器增强优化(GEO)策略:一个利用任何生成模型(经典,量子或量子启发)的框架来解决优化问题。我们专注于依靠张量 - 网络出生的机器的量子启发的Geo版本,并将其称为TN-GEO。为了说明我们的结果,我们在规范基数约束的投资组合优化问题的背景下通过结构构建S&P 500和其他几个财务库存索引的情况下运行这些基准,并证明这些量子启发的生成模型的概括能力如何在产业试验的上下文中提供这些量子启发的生成型价值。我们还全面比较了最先进的算法,并表明TN-GEO是最好的。鉴于比较中使用的求解器在这种现实世界的工业应用中已经经过了数十年的研究。另外,通过量子启发的模型迈出了实践优势的有前途的步骤,随后,量子生成模型
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
摘要:超表面最近在量子领域开辟了许多应用,包括量子断层扫描和量子纠缠态的产生。超表面能够利用纳米结构的各种几何自由度来存储大量信息,有望在处理量子信息方面发挥作用。本文,我们提出并通过实验证明了一种可编程超表面,它能够使用单光子经典光和量子光执行量子算法。我们的方法将多种可编程量子算法和操作(如 Grover 搜索算法和量子傅里叶变换)编码到超表面上的同一超透镜阵列上。空间光调制器选择性地激发不同的超透镜组来执行量子算法,而单光子相机捕获的干涉图案用于提取有关所选输出方向上的输出状态的信息。我们的可编程量子超表面方法作为一种经济有效的量子计算和信息处理组件小型化方法具有良好的潜力。
摘要 :超表面最近在量子领域开辟了许多应用,包括量子断层扫描和量子纠缠态的产生。超表面能够利用纳米结构的各种几何自由度来存储大量信息,有望在处理量子信息方面发挥作用。本文,我们提出并通过实验证明了一种可编程超表面,它能够使用单光子经典光和量子光执行量子算法。我们的方法将多种可编程量子算法和操作(如 Grover 搜索算法和量子傅里叶变换)编码到超表面上的同一超透镜阵列上。空间光调制器选择性地激发不同的超透镜组来执行量子算法,而单光子相机捕获的干涉图案用于提取有关所选输出方向上的输出状态的信息。我们的可编程量子超表面方法作为一种经济有效的量子计算和信息处理组件小型化方法具有良好的潜力。
