深度学习方法已显示出在医学图像分析 [1] 中的高性能潜力,尤其是计算机辅助诊断的分类。然而,解释它们的决策并非易事,这可能有助于获得更好的结果并了解它们的可信度。已经开发了许多方法来解释分类器的决策 [2]–[7],但它们的输出并不总是有意义的,而且仍然难以解释。在本文中,我们将 [8] 的方法改编为 3D 医学图像,以找出网络对定量数据进行分类的基础。事实上,定量数据可以从不同的医学成像模式中获得,例如用正电子发射断层扫描 (PET) 获得的结合电位图或从结构磁共振成像 (MRI) 中提取的灰质 (GM) 概率图。我们的应用重点是检测阿尔茨海默病 (AD),这是一种诱导 GM 萎缩的神经退行性综合征。我们使用从 T1 加权 (T1w) MRI 中提取的 GM 概率图(萎缩的代理)作为输入。该过程包括两个不同的部分:首先训练卷积神经网络 (CNN) 以将 AD 与对照对象进行分类,然后固定网络的权重并训练掩码以防止网络正确分类训练后已正确分类的所有对象。这项工作的目标是评估最初为自然图像开发的可视化方法是否适用于 3D 医学图像,并利用它来更好地理解分类网络所做的决策。这项工作是原创作品,尚未在其他地方提交。
家族A DNA聚合酶(Polas)形成了参与DNA复制和修复的现有聚合酶的重要且研究的一类。否则,尽管在独立的,专门的作品中表征了多个子家族,但到目前为止,他们的综合性分类却缺少。因此,我们重新审查了所有目前可用的pola semence,将它们的成对相似性转化为欧几里得空间中的位置,将它们分为19个主要簇。中有11个对应于已知的亚家族,但以前没有八个特征。对于每个组,我们都会汇编它们的一般特征,检查其系统发育关系,并在基本序列基序中进行保护分析。大多数亚家族与生命的特定领域有关(包括噬菌体),但一个亚科出现在细菌,古细菌和真核生物中。我们还表明,两个新的小家族含有功能性酶。我们使用alphafold2来生成缺乏实验降低结构的所有群集的高牢固预测模型。我们确定了涉及结构变化,有序的插入和明显的尿嘧啶-DNA糖基酶(UDG)结构域的明显结构掺入的新的保守效果。最后,T7样噬菌体子集的网络和结构分析表明,将3'–5'EXO和POL结构域分裂为两个单独的基因,第一次在Polas中观察到。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
大脑计算机界面(BCI)应用提供了一种直接的方法,将人脑活动映射到外部设备的控制上,而无需进行物理运动。这些系统,对于医疗应用至关重要,也对非医疗应用程序有用,主要使用非侵入性记录的EEG信号,用于系统控制,并需要算法将信号转换为命令。传统的BCI应用程序在很大程度上取决于针对特定行为范式量身定制的算法,并使用具有多个通道的EEG系统来收集数据。这使可用性,舒适性和负担能力复杂化。更重要的是,广泛的培训数据集的有限可用性限制了将收集到的数据分类为行为意图的强大模型的开发。To address these challenges, we introduce an end-to-end EEG classification framework that employs a pre-trained Convolutional Neural Network (CNN) and a Transformer, initially designed for image processing, applied here for spatiotemporal represen- tation of EEG data, and combined with a custom developed automated EEG channel selection algorithm to identify the most informative electrodes for the process, thus reducing data dimensionality, and放松主题的舒适性,并改善了脑电图数据的分类性能到受试者的意图。我们使用两个基准数据集(EEGMMIDB和OpenMiir)评估了我们的模型。与现有的最新脑电图分类方法相比,我们取得了卓越的性能,包括常用的EEGNET。这项研究不仅可以推进BCI领域,而且还为BCI应用程序提供了一个可扩展和负担得起的框架。我们的结果表明,OpenMiir的分类精度提高了7%,EEGMMIDB的分类为1%,平均值分别达到81%和75%。重要的是,这些改进是通过较少的记录渠道和较少的培训数据获得的,这证明了一个框架,可以从培训数据的量以及大脑信号所需的硬件系统的简单性方面支持更有效的BCI任务方法。
利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。
在医学领域,年代年龄被广泛用作描述人的指标。它描述了健康器官应遵循的参考曲线。与该参考的偏差可能与不同的因素有关,例如基因,环境,生活方式和疾病的相互作用1。为了衡量这种偏差,已经创建了生物年龄(BA)的概念。这是基于各种高级策略2,3,4的个人年龄的估计,并有望考虑上述所有因素。因此,相对于年龄,加速(或延迟的)衰老过程导致BA的较高(或较低)值。BA的分析可以与全身系统或特定器官相关联。全身评估方法通常使用非成像数据(例如,DNA甲基化模式5,蛋白质6),但经常难以解决单个器官之间衰老的变化。到此为止,Tian等人。最近提出了一种采用多模式脑成像,生理测量和血液表型来构建多机器人衰老网络8的新型方法。他们的研究揭示了器官衰老的异质性质,多机构老化网络可能有可能促进与年龄相关的发病率风险的个人早期鉴定。此外,针对特定器官的BA的调查也引起了极大的兴趣。le Goallec等。建议根据成像数据对肝脏和胰腺年龄进行预测,以改善腹部年龄9的估计。在另一项研究中,Mauer等人。 使用3D膝盖成像来估计年龄,并将其用于实现准确的多数分类(年龄在18岁以上)10。在另一项研究中,Mauer等人。使用3D膝盖成像来估计年龄,并将其用于实现准确的多数分类(年龄在18岁以上)10。
深神经网络(DNN)中所谓的“注意机制”表示DNN的自动适应,以捕获具有特定分类任务和相关数据的代表性特征。这种注意机制通过加强特征通道和本地强调每个特征图中的特征来在全球范围内发挥作用。渠道和特征重要性是在全球端到端DNS培训过程中学习的。在本文中,我们提出了一项研究,并提出了一种具有不同方法的方法,并在训练图像旁边添加了补充视觉数据。我们使用人类的视觉注意图在任务驱动或自由观看条件下独立于心理视觉实验获得的人类视觉注意图,或者在自由观看条件下或预测视觉注意图的强大模型。我们在图像旁边添加了视觉注意图作为新数据,从而将人类的视觉注意力引入DNNS培训中,并将其与全球和局部自动注意机制进行比较。实验结果表明,DNN中的已知注意力机制几乎与人类的视觉关注在一起,但提出的方法仍然可以更快地收敛和在图像分类任务中更好地表现。
综述目的。机器学习 (ML) 是一种人工智能技术,允许计算机执行任务而无需明确编程。ML 可用于辅助诊断和预后脑部疾病。虽然最早的论文可以追溯到十多年前,但研究增长速度非常快。最新发现。最近使用 ML 进行诊断的研究已经从对特定疾病与对照的分类转变为鉴别诊断。大量研究致力于预测未来的患者状态。虽然许多早期研究都集中在神经影像作为数据源,但目前的趋势是多模式的整合。在目标疾病方面,痴呆症仍然占主导地位,但已经开发出针对各种神经和精神疾病的方法。总结。ML 在辅助诊断和预后脑部疾病方面非常有前景。尽管如此,我们认为,社区在将这些工具纳入临床常规方面仍有关键挑战需要解决:需要更广泛地采用有关验证和可重复研究的良好实践;需要广泛的泛化研究;需要可解释的模型来克服黑箱方法的局限性。关键词:人工智能;机器学习;转化研究;分类;预测 重点
在本研究中,已经尝试使用机器学习(ML)方法将实验数据(ML)进行分类,以对几种焊接进行分类。在气钨电弧焊接过程(GTAW)过程中,已经开发了ML模型并将其馈送到几个传感器捕获的实验数据中。一方面,焊接参数(电压,电流,电线速度,焊接速度等)用于监视焊接过程中传递的控制能。另一方面,使用与图像处理算法结合的摄像机被用来捕获原位焊接池轮廓。还构建了一个数据库来存储,标签和订购所获得的信息。然后将此数据库用于ML模型的各种培训,验证和预测步骤。然后使用KNN分类算法对焊接配置进行分类,然后分析其效率(准确性,处理时间等)。表明,与ML结合使用的图像处理可以通过提取的特征来训练以预测焊接配置的分类。当前研究的最终观点是实现实时识别和修改焊接操作条件。