Abdi, H., Williams, LJ, & Valentin, D. (2013)。多因素分析:多表和多块数据集的主成分分析。Wiley 跨学科评论:计算统计学,5,149 – 179。https://doi.org/10.1002/wics.1246 Agostinho, D., Caramelo, F., Moreira, AP, Santana, I., Abrunhosa, A., & Castelo-Branco, M. (2022)。结合结构 MR 和扩散张量成像对阿尔茨海默病的存在进行分类,其性能与 MR 结合淀粉样蛋白正电子发射断层扫描相同:一种数据集成方法。 Frontiers in Neuroscience, 15, 638175。https://doi.org/10.3389/fnins.2021.638175 Albert, MS, DeKosky, ST, Dickson, D., Dubois, B., Feldman, HH, Fox, NC, Gamst, A., Holtzman, DM, Jagust, WJ, Petersen, RC, Snyder, PJ, Carrillo, MC, Thies, B., & Phelps, CH (2011)。阿尔茨海默病导致的轻度认知障碍的诊断:美国国立老龄化研究所-阿尔茨海默病协会工作组关于阿尔茨海默病诊断指南的建议。 Alzheimer's Dement , 7 , 270 – 279. https://doi.org/10.1016/j.jalz. 2011.03.008 Avants, BB, Cook, PA, Ungar, L., Gee, JC, & Grossman, M. (2010). 痴呆症导致白质完整性和皮质厚度相关降低:一项采用稀疏典型相关分析的多变量神经影像学研究。 NeuroImage,50,1004 – 1016。https://doi.org/10.1016/j.neuroimage.2010.01.041 Bachli,MB,Sedeño,L.,Ochab,JK,Piguet,O.,Kumfor,F.,Reyes,P.,Torralva,T.,Roca,M.,Cardona,JF,Campo, CG,埃雷拉,E.,
Siruganur ,Trichy Abstract – Modern car insurance industries waste a lot of resources due to claim leakages, which determines the amount they pay. Currently,visual Inspections and Validations are done manually,which can delay the claim processes.Previous study have shown that classifying images is possible with a small data set,by transferring and re purposing knowledge from models trained for a different task. Our goal is to build a Car Damage classifier using a deep learning model that is able to detect the different damage types and give an accurate depiction given a car image. However, due to the limiting set of data, it can be result in being a determining factor.Training a Convolutional Network from scratch (with random initialization) is difficult because it is relatively rare to have a large enough dataset.In this project we explore the problem of classifying images containing damaged cars to try and assess the monetary value of the damage. Because of the nature of this problem,classifying this data may prove to be a difficult task since no standardized dataset exists and some of the clases utilized might not be discriminative enough. Utilizing a pretrained YOLOv8 model,we trained a classifier in order to categorize the dataset,testing 3 different cases: damaged or not (damage vs whole),damage location (front vs rear vs side),damage level (minor vs moderate vs severe). Index Terms - YOLO model,CNN
• Zero Trust Network Access (ZTNA) to all IT- sanctioned apps • Adaptive Authentication to apply dynamic Multi- Factor-Authentication by classifying devices using Device Posture service (including 3rd party integration of Microsoft Intune or Crowdstrike), user role, geo-location and more • Adaptive Access & Security Controls to provide granular access to applications and apply contextual security controls on browser-based apps to protect sensitive corporate data • Enterprise Browser — A fully managed and locally installed chromium-based browser to access internal Web and SaaS apps, and to securely navigate the web both on managed and BYO devices • Single Sign On for seamless access to browser- based apps • Remote Browser Isolation to navigate the web without risk to corporate environments using a one- time browser • Visibility & Monitoring to provide visibility across all application and user traffic in a单个监视仪表板
在印刷业务中,我们实施了按公司规模划分客户群的战略。在相机业务中,我们实施了按相机参与程度划分客户群的战略,并特别关注中级客户群(高级业余群体)。
资源保护与回收法案 (RCRA) RCRA 的目的 RCRA 产生器改进规则 识别/分类危险废物产生器状态 描述和分类危险废物卫星积累点 通用废物管理 通用废物类别 积累通用废物 通用废物容器 标记通用废物 通用废物上交程序 审查 – 危险废物危险!!!
摘要 — 非侵入式脑机接口技术已经得到发展,可用于高性能检测人类心理状态。检测飞行员的心理状态尤为重要,因为他们的异常心理状态可能会导致灾难性的事故。在本研究中,我们提出了应用深度学习方法对分心程度(即正常状态、低分心和高分心)进行分类的可行性。据我们所知,这项研究是首次尝试在飞行环境下对分心程度进行分类。我们提出了一个对分心程度进行分类的模型。共有十名飞行员在模拟飞行环境中进行了实验。对所有受试者的分心程度进行分类的平均准确率为 0.8437(± 0.0287)。因此,我们相信它将对未来基于人工智能技术的自动驾驶或飞行做出重大贡献。
摘要。缺血性冠心病是全球死亡的第一大原因。发现这种疾病只能通过直接与心脏病专家进行咨询,这当然不小。因此,需要系统来检测精度但低成本的患者的心脏病。随着技术的发展,尤其是在人工智能领域,有机器学习技术可以增强自动检测能力。线性判别分析是预测尽早检测心脏病的机器学习方法之一。在这项研究中,实施线性判别分析算法以对心脏病进行分类。使用的数据集来自UCI机器学习存储库。这项研究进行了两种实验疾病,对心脏病进行了两种基于痛苦的心脏病分类,其他是将心脏病分类为5级阶段。结果证明,使用2类LDA的分类器的性能大于5类。LDA算法的性能在将心脏病与2个标签分类为靶标或输出s中。从这些结果中,精度值为0.82,召回值为0.81,F1得分值为0.81,精度为81.22%。
心力衰竭是一种具有复杂临床表现的综合征。可能是由于多种原因而发生的,包括对心脏的结构损害以及其功能变化,以防止其正确地将血液泵入身体,从而使身体没有充分的循环。随着我们人口的年龄增长,心力衰竭患者的数量每年增加,一再住院,生活质量减少和其他问题。这些问题突出了需要及时诊断,治疗和预后的必要性。通过其分类来估计心力衰竭患者的严重程度在有效治疗中具有重要的临床意义。分类心力衰竭被认为是治疗它的最关键步骤。分类心力衰竭的标准是纽约心脏协会