--协助搭建牛津低温(240mK)和高场(17T)系统。 --搭建相关电子设备。 --探针设计和样品安装。 --使用透明胶带对 kish 石墨和高取向热解石墨 (HOPG) 进行机械裂解。 --使用奥林巴斯光学显微镜对裂解的 kish 和 HOPG 进行表征。 本科研究助理:光子晶体的研究、贝壳珍珠层的制备和表征 导师:香港科技大学物理系谭永炎教授
图2:上面显示的是CRISPR-CAS9机制的一般概述。在步骤1中,已经设计了一个SGRNA,以引导CAS蛋白到基因中的目标位点。在步骤2中,识别PAM序列。在步骤3中,特定的目标位点被CAS9蛋白裂解。在步骤4中,DNA中的断裂通过非同源末端连接(NHEJ)修复,这是一种在真核生物中发现的修复系统,可修复双链DNA断裂。来源:CRISPR/CAS9系统简介。(2018)。takarabio.com。https://www.takarabio.com/learning-centers/gene-https://www.takarabio.com/learning-centers/gene-
ERK 磷酸化。接种细胞,第二天用 BBO-11818 处理。处理后两小时,通过 HTRF 评估 pERK 磷酸化。3D 活力。接种细胞,并在球体形成后 3 天用 BBO-11818 处理。处理后 4 天,通过 CTG 评估活力。长期 2D 克隆形成试验。接种细胞,第二天用 BBO-11818、BBO-10203(PI3K ⍺:RAS 破坏剂)和西妥昔单抗处理并孵育 14 或 15 天。每两周更换一次培养基和化合物。通过 Incucyte 活细胞分析系统每天两次测量汇合度。药代动力学 (PK) 和药效学 (PD)。单次口服 BBO-11818 后,在 GP2d 皮下肿瘤模型中进行剂量和时间反应 PK/PD 分析。收集血浆和肿瘤,使用 MSD 进行 PK 和 pERK 分析。体内疗效和生存研究。在具有 KRAS G12D 或 KRAS G12V 突变的细胞系衍生异种移植 (CDX) 或同源模型中,以所示剂量水平每日两次 (BID) 口服给药后评估 BBO-11818 疗效。BBO-10203 每日一次 (QD) 口服给药。抗 PD-1 或西妥昔单抗每周两次 (BIW) 通过腹膜内给药。计算肿瘤生长抑制 (TGI)、平均肿瘤消退 (REG) 和完全消退 (CR) 数。BrdU 掺入和裂解 caspase-3 测定。在采集肿瘤前 2 小时,在指定时间点,对 Capan-2 肿瘤小鼠进行单次口服指定治疗,并腹膜内注射 50 mg/kg BrdU。制备福尔马林固定的肿瘤并切片。对 BrdU 和裂解 caspase-3 进行免疫组织化学 (IHC),并对 BrdU 和裂解 caspase-3 的阳性染色进行定量,以分别测量肿瘤细胞增殖和凋亡的水平。统计分析:对克隆形成试验进行双向重复测量方差分析,随后进行事后 Tukey 多重比较检验,直至第 14 天或第 15 天。使用 Dunnett 检验对载体组或指定组进行 PD 和 IHC 研究的单向方差分析和对疗效研究进行双向重复测量方差分析。
1. 限制性片段长度多态性 (RFLP) 2. 扩增片段长度多态性 (AFLP) 3. 随机扩增多态性 DNA (RAPD) 4. 切割扩增多态性序列 (CAPS) 5. 简单序列重复 (SSR) 长度多态性 6. 单链构象多态性 (SSCP) 7. 异源双链分析 (HA) 8. 单核苷酸多态性 (SNP) 9. 表达序列标签 (EST) 10. 序列标记位点 (STS)
• 结构成像 – CT、MRI、扩散张量成像 • 功能成像 – 更多用于研究 – fMRI、PET、脑 SPECT • 光谱学:磁共振光谱 (MRS)、近红外光谱 (NIRS) • 平衡测试 – BESS、感觉组织测试 (SOT)、步态测试、虚拟现实 • 电生理测试 – EEG、诱发电位 (EK)、事件相关电位 (ERP)、脑磁图 (MEG)、心率变异性 – 遗传学:APoE4、通道病 • 血液标志物:S100、神经元特异性烯醇化酶、裂解 – Tau 蛋白、谷氨酸
背景和目的:先前的研究证实了骨髓间充质干细胞衍生的外泌体(BMSC-EXO)的抗炎作用。我们旨在研究BMSC-EXO对糖尿病肾脏疾病(DKD)以及基本机制的治疗作用。方法:SD大鼠是通过链唑替辛与高脂饮食结合诱导的,以建立糖尿病疾病模型。bmscs-exo通过尾静脉以每周100 µg的剂量注入12周。使用HE,Masson和Adikicic Acid-Schiff和免疫组织化学染色评估了大鼠肾脏中的病理变化。tunel染色和蛋白质印迹用于评估大鼠肾细胞中与凋亡相关蛋白的表达水平。通过Western印迹通过PCR和NF-κB(p65)检测TNF-α水平,以检查肾脏组织中的炎症反应。结果:BMSCS-EXO显着缓解了糖尿病大鼠中肾脏结构损伤和凋亡细胞的分布。此外,BMSCS-EXO增加了凋亡蛋白Bax的表达,并降低了细胞凋亡的蛋白质裂解caspase 9的表达,并切割了caspase 3。此外,通过BMSCS-EXO处理,肾脏组织和NF-κB(p65)表达的TNF-α的转录水平也降低。此外,BMSC-EXO治疗降低了糖尿病大鼠中葡萄糖(GLU),肌酐(CR)和官僚氮(BUN)的水平。结论:BMSCS-EXO可以通过抑制凋亡和炎症来减轻糖尿病肾脏损害。
摘要:玛卡酰胺是从玛卡中提取的一类具有生物活性的天然产物,据报道,它对癌症有抑制作用。然而,它们在肺癌中的作用目前尚不清楚。在本研究中,玛卡酰胺B被证明能抑制肺癌细胞的增殖和侵袭,这分别通过细胞计数试剂盒-8和Transwell测定确定。相反,玛卡酰胺B诱导细胞凋亡,经Annexin V-FITC测定确定。此外,玛卡酰胺B和聚(ADP-核糖)聚合酶抑制剂奥拉帕尼联合治疗进一步抑制了肺癌细胞的增殖。在分子水平上,经蛋白质印迹法测定,玛卡酰胺B显著增加了毛细血管扩张性共济失调突变(ATM)、RAD51、p53和裂解胱天蛋白酶-3的表达,而Bcl-2的表达水平降低。相反,当用小干扰RNA技术敲低ATM表达时,在用玛咖酰胺B处理的A549细胞中,ATM、RAD51、p53和cleaved caspase-3的表达水平降低,而Bcl-2的表达水平升高。一致地,ATM敲低部分挽救了细胞增殖和侵袭能力。总之,玛咖酰胺B通过抑制细胞增殖和侵袭,诱导细胞凋亡来抑制肺癌进展。此外,玛咖酰胺B可能参与调控ATM信号通路。本研究为治疗肺癌患者提供了一种潜在的新型天然药物。
L-377,202 前药由阿霉素 (Dox) 与前列腺特异性抗原 (PSA) 肽底物结合而成,该肽底物可在肿瘤部位被酶活性 PSA 裂解。尽管在 I 期试验中最初很有希望,但由于某种程度的非特异性激活和毒性问题,L-377,202(本文称为 Dox-PSA)的进一步测试已停止。为了提高 Dox-PSA 的安全性,我们将其封装到低温敏感脂质体 (LTSL) 中以绕过全身激活,同时在轻度高温 (HT) 下控制释放时保持其生物活性。观察到暴露于轻度 HT 的 PSA 表达细胞的细胞核中活性前药的时间依赖性积累,表明 Dox-PSA 有效地从 LTSL 中释放出来,被 PSA 裂解并以游离 Dox 的形式进入细胞核。此外,我们已经证明,在 37°C 下,负载 Dox-PSA 的 LTSL 可以阻断其生物活性,而与游离 Dox-PSA 相比,与轻度 HT 结合会导致 2D 和 3D PC 模型中的细胞毒性增强。更重要的是,与游离 Dox-PSA 相比,封装在 LTSL 中的 Dox-PSA 延长了其血液循环时间,并减少了 C4-2B 肿瘤小鼠心脏中的 Dox 积累,从而显著改善了 Dox-PSA 的治疗窗口。最后,在实体和转移性 PC 肿瘤模型中,负载 Dox-PSA 的 LTSL 与 HT 相结合显著延缓了肿瘤生长,其速度与用游离 Dox-PSA 治疗的小鼠相似。这表明该策略可以阻断 Dox-PSA 的系统性裂解而不会降低其在体内的功效,这可能是治疗局部晚期 PC 患者的更安全的选择。
乳糖通透酶,由乳糖操纵子的 lac Y 基因编码的蛋白质。TONPG 不能被 -半乳糖苷酶(由 lac Z 基因编码)切割。TONPG 可用于分离乳糖操纵子的突变体。 下列哪种突变体可以用 TONPG 分离? a. 不产生 -半乳糖苷酶的 lac Z 突变体。 b. 不产生通透酶的 lac Y 突变体。 c. 不产生功能性阻遏蛋白的 lac I 基因突变体。 d. 乳糖操纵子操纵子区域的组成性突变体。 16.(1 分) 发现一种细菌的两个基因型 M 和 N 的生长速度为 10%(生长
抗体药物偶联物 (ADC) 能够将细胞毒性药物靶向递送至肿瘤细胞。理想情况下,ADC 应保留抗体的良好药代动力学和功能特性,在体循环中保持完整无毒,并在靶位点激活并释放足够的药物以杀死靶细胞。ADC 开发中的一个主要挑战是接头的设计。Multilink TM 是一种新型接头,可被组织蛋白酶 B 1,2 的羧基二肽酶活性选择性识别和裂解。这种新型接头系统可实现高效和选择性的药物释放。它在血浆中也很稳定,并且能够制备具有高药物抗体比 (DAR) 的 ADC。增加杀死它们的机会。
