了解气候变化需要哪些科学概念?Lorna E. Jarrett A,George Takacs A,Brian Ferry B介绍作者:Lorna E. Jarrett(Lorna@una@uow.edu.au)一所工程物理学院定性分析,物理教育研究摘要摘要一大批国际研究表明,学校学生经常对气候变化科学有误解。为了更详细地调查学生对这个复杂主题的理解,正在为气候变化的基础的关键科学概念开发概念清单(CI)。本文报告了此过程的第一阶段:确定应包括哪些概念。进行了一项Delphi研究,咨询了18个学术知识的学者,研究人员和高中教师。也进行了文献综述,以确定哪些概念对于理解气候变化很重要。CI涵盖的最终概念清单是这些概念的综合。澳大利亚科学与数学教育会议会议录,墨尔本大学,2011年9月28日至9月30日,第89-94页,ISBN编号978-0-9871834-0-8。本研究的背景环境此处报道的研究是一项较大的研究的一部分,旨在调查高中生关于气候变化概念的想法及其在上下文中应用这些知识的能力。(2008),Gray等。它采用多种方法:概念清单(CI),概念映射和访谈。本文介绍了用于确定CI中包含哪些概念的方法以及所得的概念列表。此处报道的研究获得了沃隆港大学的批准。A large number of studies carried out over the past two decades have shown that school students' understanding of the science of climate change is limited and that misconceptions are common (Boyes & Stanisstreet, 2001; Fisher, 1998; Gowda, Fox, & Magelky, 1997; Hansen, 2010; Koulaidis & Christidou, 1999; Kurup, 2003; Plunkett & Skamp, 1994; Rye, Rubba, & Wiesenmayer,1997年,Schultz,Shepardson,Niyogi,Choi和Charusombat,2009年;提出的原因包括学生对潜在的科学概念的知识或在不同背景下学习的知识的问题(Koulaidis&Christidou,1999;Österlind,2005年);但是,这尚未直接测试。我们的研究旨在解决研究文献中的这一差距。概念清单(CIS)是旨在用一个主题诊断学生概念困难的多项选择评估工具(Libarkin,2008)。它们已在科学教育中广泛使用,以研究学生关于与更广泛主题有关的许多概念的想法,并且可以针对大型参与者群体进行管理。独顺式的一个目的是测试误解的普遍性,因为分散注意事件被编写以反映常见的误解。根据Richardson(2004)的说法,CI开发的第一阶段是决定要测试哪些概念。 (2005),Herman等。根据Richardson(2004)的说法,CI开发的第一阶段是决定要测试哪些概念。(2005),Herman等。(2005),Herman等。为此,作者建议使用Delphi研究。Delphi研究已由Danielson(2005),Goldman等人使用。(2010)和Streveler等。(2003)对于CI开发的这一阶段。Delphi方法Delphi方法的基本特征包括调查的多次迭代,具有控制反馈,参与者的匿名性,以及每次迭代之后,以统计响应摘要的形式向参与者提供反馈。参与者可以使用此反馈来修改他们的反应(Linstone&Turoff,1975; Whitman,1990)。Clayton(1997)断言,这是一种“系统的,严格和有效的方法,旨在引起有效且有效的用户友好答案”(第374页)。
富营养化被认为是对全球河口和沿海生态系统健康的最大威胁之一。这是一种全球现象,对食物网,水质和水生化学反应有显着影响。富营养化是向河口和沿海地区供应生态系统生态能力的结果(Nixon,2009; Rabalais等,2009)。营养负荷也可能导致养分比的变化,这可能会在海洋生态系统中产生“不良干扰”。在这一目标中,至关重要的是,沿海地区可以实现良好的环境地位(GES)。引起沿海富营养化的驾驶员设置在多个人类诱发的压力源和富营养化的影响的较大框架内(例如生物多样性,生态系统降解,有害藻类绽放和底部水中的氧气表现出现的损失似乎受到与其他压力的协同作用的加剧,包括过度的压力,沿海沿海发育过度,沿海发育和气候驱动的升高,海水表面温度,海洋酸性和沿海沿岸排放。实际上,气候变化会影响养分的投入和行为,并可能加剧富营养化及其相关的负面影响(Statham,2012; Malone and Newton,2020; Rozemeijer等,2021)。富营养化对水生环境的健康的重要性及其与多种压力的联系导致汇编了当前的研究主题:“在富营养化过程中,气候变化与人为压力之间的局限性,第二卷”。然而,气候变化与富营养化之间的联系很复杂,主要与温度,风向模式,水文周期和海平面上升有关,导致淡水系统的淹没,地层的变化,流动时间和流动性时间和植物生产力,生产力,沿海风暴的活动,沿海风暴活动,物种和ecosys的变化(2012年)。
全球气候变化对农作物的生长,发育和产量产生了重大影响。中国东北部的大豆生产是中国传统的大豆生产地区之一,对于发展国内大豆工业并减少对进口大豆的依赖而言,具有很大的意义。因此,评估未来气候变化对中国东北大豆产量的影响至关重要,并提出合理的适应措施。在这项研究中,我们以中国东北部的富吉恩市为例,并使用了DSSAT中的Cropgro-Soybean模型(农业技术转移的决策支持系统)模拟未来气候变化对2020年代四个时期(2021-2030)的四个时期的大豆产量的影响(2041-2050)和2050S(2051-2060)在两个代表性浓度途径(RCP)方案(RCP4.5和RCP8.5)下,进一步确定最佳的农艺管理实践。结果表明,校准和经过验证的模型适合在研究区域模拟大豆。通过分析未来气候场景RCP4.5和RCP8.5在Precis区域气候模型中的气象数据,我们发现,在海伦吉安吉安吉省富士城的生长季节,平均温度,累积降水量和累积太阳辐射将主要增加。与模型仿真结果结合在一起,表明在CO 2受精的效果下,未来的气候变化将对大豆产量产生积极影响。与基线(1986-2005)相比,大豆产量将增加0.6%(7.4%),3.3%(5.1%),6.0%(16.8%)和12.3%(20.6%)和2020年代,2030年代,2040年代,2040年代和2050年度的rcp4.5(RCP4.5)(rcp8.5)。 RCP4.5(RCP8.5)分别为5月10日(5月5日)和50 mm(40mm)。在未来的气候条件下,农艺管理实践,例如在大豆增长的关键阶段推进播种日期和补充灌溉,将增加大豆产量,并使大豆增长更适合未来的气候变化。
气候变化已成为对人类健康和经济的日益严重的挑战和威胁。气候变化是一个不可否认的现实,在如此较高的社会,身体和心理水平上从未经历过。气候变化的影响可能导致未来几十年的大规模人口位移和迁移,从而导致脆弱地区的不稳定和冲突(1,2)。气候变化会影响世界各地的健康,人类,企业和经济体。由于地理敏感性和适应能力而导致的不良反应有所不同,但仍然受到地球上所有国家的感觉。效果将增强所有国家的未来一代,而与空间位置无关。这是一个事实,即战争,低强度的冲突,恐怖主义,经济危机,超级大国竞争和流行病都威胁到世界和平与稳定(3)。但是,气候变化威胁世界和平的大小是无与伦比的。对全球和平的这种前所未有的威胁和人类的存在也会损害公众的心理状态(4)。气候变化是焦虑的重要来源,并通过直接和间接的暴露对心理健康产生了影响。直接暴露是指第一手暴露于气候变化相关的灾害,例如洪水,飓风,野生动物,沙尘暴和干旱。这种类型的暴露可能会引起严重的心理健康问题,例如创伤后应激障碍,抑郁症,焦虑症减少主观幸福感(5)以及自杀率提高(6,7)。但是,间接暴露是指观察,思考和感知气候变化,而无需亲自经历任何与气候变化有关的灾难。它也可能通过查看与气候变化相关的媒体内容或注意到其物理环境的变化,生物多样性和环境降解的情况。最新的新证据表明,间接暴露会引起负面情绪,例如抑郁,内gui,悲伤,愤怒,恐惧,焦虑和绝望(8)。科学文献强调了由于研究中间接暴露于气候变化而引起的关注,焦虑或损失的几个术语。例如,“气候焦虑”是指由于气候变化引起的焦虑(9),“ Solastalgia”是指环境变化引起的困扰(10),“生态悲伤”是指由于
•Cross-NOAA line office partnership •Develop national infrastructure to enhance NOAA's climate modeling and forecasting capabilities in support of the nation's living marine resources •Extend Earth System components developed/applied at global scale to regional scales •Stakeholder engagement (e.g.NOAA Sanctuaries, NOAA Fisheries) •Data and products from CEFI will ultimately assist resource managers, coastal communities, and other stakeholders • CEFI: https://www.fisheries.noaa.gov/topic/climate-change/climate,-ecosystems,-and -fisheries
3估算Neptun Deep可能引起的与温度相关的过早死亡的数量,Wim Thiery教授,水与气候Vrimate Vrije Universiteit Brussels的副教授Wim Thiery教授使用了美国研究人员R. Daniel Bressler开发的碳方法的死亡率R. Daniel Bressler开发的死亡率。用于此分析的排放场景假设平均全球温度增加4.1°C 2100。碳死亡率估计依赖于关于排放,气候动态和人类对未来气候的反应的假设。今天发出的每吨碳将有助于加热我们的星球,因此将有助于对未来的影响。化石燃料与气候危机之间的联系已经建立了良好的建立,人为引起的气候变化与极端天气事件的增加之间的关系也是如此。不可能绝对确定我们的气候将如何改变或会产生影响。因此,此处提出的估计值依赖于许多假设,并且受到大型不确定性的影响。这项研究仅旨在说明当代排放可能导致未来气候变化影响的程度。
37 Langway(1958; 1967)。 38 Langway(1967,p。7)。 39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -37 Langway(1958; 1967)。38 Langway(1967,p。7)。 39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -38 Langway(1967,p。7)。39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -39 Martin-Nielsen(2016年,第95页)。40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。42“冰盖”是大于50,000 km 2的圆顶冰川。这种类型的冰川仅存在于格陵兰和南极。43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。(2010年,第33页)。有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。86 - 100)。44 Martin-Nielsen(2013年,第87 - 88)。45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。(1958年1月28日),给威利·丹斯加德的信; Renaud,A。([[1962年11月]),Egig 1957 -
