摘要 局部适应已被证明在植物中很常见,并得到了广泛的研究,从提高植物产量到预测物种对未来气候变化的反应。然而,与主要作物和林木相比,对果树在当前和未来气候景观中的局部适应性研究仍然缺乏。随着大规模基因组数据的爆炸式增长,景观基因组学已成为一种新方法,用于识别与环境变化相关的候选基因座(即基因型-环境关联或 GEA),同时允许进行下游分析,例如计算适应指数和遗传偏移,可用于预测种群响应未来环境变化的时空变化。在这里,通过总结研究物种局部适应性以及基于当前基因型-环境关联评估遗传偏移的前沿方法,我们呼吁更加努力地阐明果树局部适应的基因组和分子基础并预测快速气候变化下可能出现的适应不良。总之,研究果树的局部适应性对于确保长期可持续性和生产力具有重要意义。景观基因组学的出现具有巨大的潜力,可以促进我们对局部适应性背后的基因组和分子机制的理解,并预测对环境变化的反应。
本世纪正在呈现全球气候变化,并在环境条件下发生了重大变化,这可能会影响几种生物体的生长,发育和生存。反过来,这种影响会影响地球上生物的食物,饲料和饲料的可用性。反复发生的环境压力,例如热,干旱,冷,昏昏欲睡等。可能会造成巨大的收益率损失,对农作物的挑战以及对可持续粮食安全的担忧。在压力条件下基因表达的调节是植物为应对环境应力而采用的分子策略之一。microRNA(miRNA)在通过翻译抑制或由于mRNA的裂解而在控制基因表达方面起重要作用。此外,miRNA正在成为调节发育过程(包括生产力/产量以及对植物压力的反应)的较新候选者。通常,miRNA的靶标是转录因子和与胁迫反应相关的基因,从而影响植物的适应性潜力。miRNA(miR160-arf,miR159-myb和miR169-nFya)的组合参与了调节植物干旱下基因表达的调节。这些干旱响应性的miRNA被证明具有影响生理,生化和分子反应的影响,并用作作物植物基因操纵的候选物,以增强胁迫弹性。本综述提供了对miRNA的见解,这是一种应力,在植物(尤其是大米中)对环境压力的弹性中起着重要作用。据报道,miRNA可以控制关键的生物学过程,例如呼吸,光合作用,信号通路,衰老等,尤其是在压力条件下。已经讨论了利用基于miRNA的策略进行改进的一些局限性以及未来的观点。这些可能有助于理解miRNA的功能,这是基因调节网络的重要组成部分之一,这将促进农作物的遗传改善,从而获得多种应力并产生潜力。
根据世界卫生组织的数据,新型冠状病毒病(COVID-10)曾是一个公共卫生问题,截至 2020 年 6 月 10 日,全球已有超过 710 万人感染,40 多万人死亡。在当前情况下,巴西和美国每天的新增病例和死亡人数都很高。因此,预测一周时间窗口内的新增病例数非常重要,这可以帮助公共卫生系统制定应对 COVID-19 的战略规划。预测人工智能(AI)模型的应用有可能处理像 COVID-19 这样的时间序列的困难动态行为。在本文中,贝叶斯回归神经网络、立体回归、k 最近邻、分位数随机森林和支持向量回归可单独使用,并结合最近的预处理变分模态分解(VMD)将时间序列分解为几个固有模态函数。所有 AI 技术均在时间序列预测任务中进行评估,预测巴西和美国五个州的累计 COVID-19 病例数提前一、三和六天,截至 2020 年 4 月 28 日,病例数较高。所有预测模型均采用先前累计的 COVID-19 病例数和每日温度和降水等外生变量作为输入。根据性能标准评估模型的有效性。一般而言,VMD 的混合在准确性方面优于单一预测模型,特别是当预测时间范围提前六天时,混合 VMD-单一模型在 70% 的案例中实现了更好的准确性。关于外生变量,作为预测变量的重要性排名从高到低依次为过去病例、温度和降水。因此,由于评估模型能够有效地预测长达六天的累计 COVID-19 病例数,因此
埃德斯属的蚊子疾病载体的生态和生物学具有高度动态性,适应了各种气候和地形因素,这使其控制挑战。基于证据的蚊子的控制需要在这种适应性的地位下进行详细的详细信息,这受到环境动态的极大影响。了解其分布的驱动因素与预测疾病风险有关。为了更好地了解驱动因素和动力学,我们研究了埃德斯蚊子在尼日利亚的拉各斯州的分布及其与气候和人为因素的联系。幼虫和成年人是从拉各斯州的八个地方政府地区(LGA,四个城市和四个乡村)收集的,导致98个发生点。使用23个环境变量,我们对AEDES SPP的地理分布进行了建模。在当前气候条件下。人口密度被覆盖以估计灰牛病毒疾病的风险。尽管在所有八个LGA中都发现了埃德斯蚊子,但物种分发量差异很大。在整个LGA中都发现了埃及伊蚊和艾德斯白化病,并具有物种分配的证据。实际上,所有LGA都被预计是埃德斯蚊子的高度合适的环境,其中只有两个LGA中等适当的环境。人为因素,包括广泛的轮胎积累,有助于埃及埃及和艾德斯白化病的幼虫栖息地可用性。与农村地区相比,人口密度较高的城市地区也与幼体栖息地的可用性增加有关。人口密度较高的城市地区也与幼体栖息地的可用性增加有关。此外,该模型表明,与Ogun状态共享BOR DER是AEDES SPP的高度合适的环境。我们的研究强调,最冷的季度的主要促成艾edes分布的主要因素是降水和温度。本文旨在了解人类和气候因素如何影响拉各斯州的埃德斯蚊子分布,这对于防止疾病传播至关重要。
1气候系统研究,芬兰气象研究所,赫尔辛基,芬兰2芬兰2大气与地球系统研究所,赫尔辛基大学科学系,赫尔辛基大学,赫尔辛基,芬兰3森林科学系,赫尔辛基大学,赫尔辛基大学,赫尔辛基大学,芬兰芬兰4自然资源研究所,芬兰,芬兰,芬兰,芬兰,自然资源。
埃塞俄比亚对气候变化的脆弱性加剧了贫困率,人口迅速增长,媒介传播疾病的患病率提高以及对雨养农业的严重依赖。这项叙述性评论旨在汇编有关极端气候对埃塞俄比亚物理环境,公共卫生和生计的影响的现有数据,从而强调了该地区对这项研究的重要性。数据来自PubMed,Scopus和Web of Science等数据库的同行评审期刊文章,以及报告和其他未发表的文档。结果表明,埃塞俄比亚正面临着与气候相关的极端事件的频率,严重性,持续时间和时间的增加。关键挑战包括环境降解,农作物产量降低,经常性洪水,干旱,饥荒,热浪增加以及传染病的传播。平均每日降雨量预计将从2.04毫米(1961–1990)降低到1.97毫米(2070–2099),表明气候趋势恶化。此外,自1960年以来,平均年温度的平均温度升高为1.3°C,每十年的速度为0.28°C。洪水记录表明,急剧上升,2020年记录了274起洪水事件,造成了广泛的损失,其中包括埃塞俄比亚高地的每年10亿吨土壤损失,每年将土地生产率降低2.2%。从1964年到2023年的干旱影响了9650万人,将GDP降低了4%,将农业产量降低了12%,通货膨胀率提高了15%。远处,索马里,甘贝拉和邦斯古尔·古木兹的地区表现出由于温度升高而引起的健康影响的极大脆弱性。解决气候极端对于减轻对埃塞俄比亚环境,公共卫生和生计的不利影响至关重要。
摘要:在意大利首次报道了石榴的替代黑点(Punica Granatum)。在2023年春季,在一个异常雨期之后,在商业石榴上爆发了这种疾病。从叶子和水果的典型坏死斑中回收的总共30种随机选择的替代株。基于固体琼脂培养基(PDA和MEA)的菌落形态,分离株分为三种不同的形态(1、2和3)。前两种形态型仅包含来自水果的分离株,而形态型3仅包含来自叶片的分离株。对四个DNA区域的多基因系统发育分析,包括内部转录间隔物(ITS),翻译伸长因子1-α(EF-1α),3-磷酸甘油醛脱氢酶(GAPDH)(GAPDH)和SCAR SCRAIR MARKER(OPA10-2),隔离及其隔离量和2和2和2和2和2和2和2和2和2和2和2和2和2和2和2和2和2和2和2和2 Arborescens。在未能的叶子和果实的致病性测试中,所有三种形态的分离株都在三种石榴品种的叶子上产生了症状,“ Acco”,“ Acco”,“奇妙”和“ ETNA”。“ Acco”叶子上的症状最严重。相反,“ Acco”的果实最容易受到影响。形态型2和3的分离株在“奇妙”和“ etna”的果实上没有致病性。这是意大利的替代黑点和与全球石榴的替代黑点相关的A. arborescens的第一份报告。
全球摘要,多个生态系统服务越来越成为可持续森林管理中的重要议程。但是,尚不清楚哪种森林管理实践将导致最佳的生态系统服务促进可持续性。这项研究旨在确定实施稀疏时间表和30岁的轮换年龄是否对坦桑尼亚的生态系统服务和柚木摊位的经济利益的提供有影响。碳量化和成本效益分析方法用于研究在五种情况下木材生产和碳固存的气候和经济利益,在五个情况下,三个稀疏时间表和30岁旋转年龄是基线。从168个有目的选择的半径圆图9.78 m的圆图中收集了数据,该图在9个稀薄的支架中系统地分布。稀薄的林分,其强度分别为50%,50%和25%。的结果表明,从基线降低33.4%的旋转年龄,同时保持三个稀疏时间表最大化的气候和木材生产和碳存储目标的经济利益提高了181.5%。首选的稀疏时间表和旋转年龄分别具有821 m 3 /ha和41.3 t /ha的木材固换。建议将柚木森林种植园用于木材生产和碳固存的综合目标。关键字:碳固存;生态系统服务;净现值;简化时间表简介
15. 补充说明 合同官员代表 (COR) 是 Larry Wiser。 16. 摘要 需要改进长期路面性能 (LTPP) 计划的气候数据,以支持当前和未来关于气候对路面材料、设计和性能的影响的研究。机械经验路面设计指南 (MEPDG) 的校准和增强只是这些新兴需求的一个例子。一种新兴的气候数据源,现代时代回顾性分析研究和应用 (MERRA),由美国国家航空航天局 (NASA) 为其内部建模需求而开发,从 1979 年开始在相对细粒度的均匀网格上提供连续的每小时天气数据。MERRA 基于再分析模型,该模型将计算的模型场(例如大气温度)与在空间和时间上不规则分布的地面、海洋、大气和卫星观测相结合。 MERRA 数据的时间分辨率为每小时,空间分辨率为纬度 0.5 度 x 经度 0.67 度(中纬度约为 31.1 x 37.30 英里),覆盖全球。MERRA 数据与最佳地面观测数据进行了比较,无论是统计上还是对路面性能的影响方面,都与使用 MEPDG 预测的结果进行了比较。这些分析包括对 MEPDG 性能预测对基础变化的敏感性进行系统定量评估
摘要:各地已经实施了分水岭开发项目,以解决自长期以来的土壤和节水问题和社会资本形成。但是,由于天气参数的不确定和不稳定的变化,气候变化会影响农民的农业生产,生产率,生计和收入,尤其是温度,湿度和降雨。因此,需要在完整的流域上叠加缓解气候变化和适应措施,以便我们可以在流域进行气候证明。因此,纳巴德(Nabard)于2017年启动了气候验证计划,由BAIF开发研究基金会(Baif Development Research Foundation)在马哈拉施特拉邦各个农业气候区域实施的BAIF开发研究基金会实施。在4年的时间内,在不同的农业气候区域中采取了一系列干预措施,容易受到多种气候风险的影响。该案例研究强调了用于减少脆弱性的有效气候干预措施以及其背后的方法,以便在马哈拉施特拉邦不同社区之间建立韧性。此外,它探讨了这种气候干预措施复制的需求和潜力,以增加不同农业气候区中社区的适应能力,这与该地区的气候 - 特定需求一致。案例研究研究了可以复制项目的三个关键方面。第一个是区域特定方法的制度方法,用于实施气候 - 验证干预措施。1。第二,证明有效的低碳,气候 - 弹性技术和系统可以促进尺度 - 上升和复制。第三,它讨论了实施气候适应和缓解措施的底部方法的有效性:第四,在印度的所有气候变化项目和计划中都可以建议解决知识差距的集群水平方法。关键字:气候变化,气候弹性复制性,底部 - 向上方法,特定区域方法,脆弱性评估,适应途径,气候证明。引言对项目区域进行了详细研究,分析了生物物理和农业气候环境。访问了该地区对气候变化的脆弱性,其中包括使用CRISTAL工具制定危险映射,危害优先级,现有的自适应能力和适应计划的准备。提到了Rapi指数,社会 - 村庄的经济状况和农业气候区。