摘要。已经开发了ECHAM5/MYSY AT- MOSPHER化学模型(EMAC)的子模型PSC,以模拟极性平流层云的主要类型(PSC)。子模型中超冷三元溶液(STS,1B PSC)的参数化基于Carslaw等人。(1995b),在Marti和Mauersberger上模拟冰颗粒(2型PSC)的热力学方法(1993)。存在硝酸三水合物(NAT)颗粒(1A型PSC)的形成两个不同的参数。首先是基于Hanson和Mauersberger(1988)的瞬时热力学方法,第二个是新的,并借助于Carslaw等人的表面生长因子来考虑NAT颗粒的生长。(2002)。可以在子模型中选择此NAT参数之一。本出版物解释了子模型PSC的背景和使用子模型的使用,目的是模拟EMAC中的现实PSC。
每年四月,欧洲委员会发布欧盟和瑞士排放交易系统(ETS)排放数据。虽然欧盟和CHETS航空公司数据仅限于欧洲内部航班,运输与环境(T&E)的排放,但将分析扩展到与EU27,挪威,挪威,冰岛,瑞士,瑞士和英国的所有航班,以允许在欧洲和国际层面上更全面地相关的相关排放量。这是通过将欧盟和瑞士ETS数据与从OAG Flights数据计算出的排放(链接到方法论)来完成的。T&E的分析重点介绍了2023年的排放,将其与2019年的排放量相比,是欧洲航空的历史高峰年,在Covid-19之前和2022年的排放量。简报中考虑的排放范围是与从欧洲机场出发的航班相关的那些,因为它们直接与欧洲领土上的燃料升高有关。
这项研究为从气候监测到广泛的地区到环境项目和农业任务提供了更准确的细分机会。例如,该解决方案促进了对森林区域的有效分析,其特征和变化,即使在云云比例很高的北部地区,同时考虑了气候条件对图像的影响。
本文提出了一种基于深度学习的可容纳性评估方法,构成了街头规模的智能手机点云和城市规模的3D行人网络(3DPN)。3DPN已被研究和映射以进行轮廓和智能城市应用。然而,由于省略的行人路径,未发现的楼梯和过度简化的高架人行道,文献中3DPN的城市水平尺度对于评估轮椅的可及性(即车轮)不完整;如果映射量表处于为轮椅使用者设计的微观级别,则可以更好地表示这些功能。在本文中,我们使用智能手机点云加强了城市规模的3DPN,这是一种有希望的数据源,用于补充细微的细节和由于厘米级别的准确性,鲜艳的色彩,高密度和人群源性质而导致的细颗粒细节和温度变化。三步方法重建行人路径,楼梯和坡度细节,并丰富城市规模的3DPN进行轮廓评估。PEDESTRIAN路径的实验结果表现出准确的3DPN中心线位置(miou = 88。81%),楼梯检测(miou = 86。39%)和轮子性评估(MAE = 0。09)。本文贡献了一种适合,准确和人群采购的轮子评估方法,该方法将无处不在的智能手机和3DPN架起高密度和丘陵的城市区域的3DPN。
摘要由于典型的长尾数据分布问题,模拟无域间隙合成数据对于机器人技术,摄影测量和计算机视觉研究至关重要。基本挑战涉及可靠地衡量真实数据和所谓数据之间的差异。这样的措施对于安全至关重要的应用(例如自动驾驶)至关重要,在这种应用中,在此驾驶中可能会影响汽车的感知并造成致命事故。以前的工作通常是为了在一个场景上模拟数据并在不同的现实世界中分析性能,阻碍了来自网络缺陷,类别定义和对象代表的域差距的不相交分析。在本文中,我们提出了一种新的方法,用于测量现实世界传感器观测值和代表相同位置的模拟数据之间的域间隙,从而实现了全面的域间隙分析。为了测量这种域间隙,我们引入了一种新型的公制狗PCL和评估模拟点云的几何和语义质量的评估。我们的实验证实了引入的
根据同行评审的研究,人工智能 (AI) 和基于云的协作平台在灾难响应中收集数据,以根据紧急情况的复杂性提出具体计划 (Gupta et al., 2022)。 (RF) 算法找到影响家庭疏散准备时间的因素 (Rahman et al., 2021)。人工智能和基于云的平台通过 (众包) 协调人道主义需求 (Gupta et al., 2022)。人工智能和基于云的系统向应急响应人员提供必要的信息;该方法还有效地分配资源以进行响应 (Gupta et al., 2022)。地理人工智能灾难响应通过提供准确的地图分析,使灾难响应人员能够获得精确的信息 (Demertzis et al., 2021)。最先进的深度学习方法可以检测卫星图像的变化,从而实现高效响应 (Sublime & Kalinicheva, 2019)。 AGRA (AI) 是一种增强地理路由方法,可改善路由问题 (Chemodanov 等人,2019)。早期预警通过应用 AI SVM 分析可用数据,为监控室做出洪水或无洪水的决策,从而促进受影响人群在灾难中的撤离 (Al Qundus 等人,2022)。结合人工神经网络 (ANN) 和互联网 (IoT) 以及基于人工智能/机器学习 (ML) 的 ANN 的洪水预报方法可用于早期洪水预警系统。通过人工智能 (AI) 和机器学习 (ML) 的集成系统、地理信息系统 (GIS) 与无人机 (UAV) 方法以及在灾难期间寻找最安全疏散路线的路径规划技术,保护弱势群体免受洪水灾害 (Munawar 等人,2022)。人工智能与 UNOSAT 一起对受灾地区的地图进行高级分析,以进行早期预警 (将人工智能融入卫星,2021)。根据在线调查,不同的因素影响公众对在灾难中应用人工智能的看法。为人工智能系统用户提供了指南,以确保系统的责任。(Yigitcanlar 等人,2021 年)。
CRISIL Limited (CRISIL) 的一个部门 CRISIL Research 在编制本报告时已尽到应有的谨慎和小心,该报告基于 CRISIL 从其认为可靠的来源 (数据) 获得的信息。但是,CRISIL 不保证数据/报告的准确性、充分性或完整性,也不对任何错误或遗漏或使用数据/报告所获得的结果负责。本报告不构成对报告中涉及的任何公司进行投资/撤资的建议。CRISIL 特别声明,它对本报告的订阅者/用户/发送者/分销商不承担任何财务责任。CRISIL Research 独立运作,无法访问 CRISIL 评级部门/CRISIL 风险和基础设施解决方案有限公司 (CRIS) 获得的信息,后者可能在正常运营中获得机密信息。本报告中表达的观点是 CRISIL Research 的观点,而不是 CRISIL 评级部门/CRIS 的观点。未经 CRISIL 事先书面批准,不得以任何形式发布/复制本报告的任何部分。
随着人工智能技术发展的繁荣,大型语言模型正在展示其在理解和创造力方面的潜力。大型语言模型(例如GPT-4和Gemini)能够有力地学习各种专业级考试。但是,作为语言模型本身,其强大的理解只能反映在文本序列中。当前,尽管可以通过3D点云与大型语言模型之间的连接生成视频,但目前尚无提示项目通过属性计算结果直接与一维相互作用。点云数据也丰富了可以支持城市建设的各种任务的信息。对于场景级别的点云数据,已经进行了许多有关语义细分,目标检测和其他任务的研究。但是,通常很难从感知结果中为场景构建提供直接帮助。本文通过结合3D点云语义细分的结果,介绍了一种将大语言模型应用于城市生态结构的方法。目的是将大语言模型(LLM)(LLM)的先验知识和创造能力集成到城市发展中,并将结果与点云语义分段结果得出。这种整合旨在建立一个互动点云智能分析系统,该系统是为了帮助城市生态文明建设中的决策过程而定制的,从而为智能城市发展的发展提供了创新的观点。
本文提出了一种新的方法,用于从密集的点云数据中自动为曼哈顿环境中的建筑物创建语义数字模型。与以前仅依赖于数据驱动方法的方法不同,我们的方法将人工智能与域工程知识集成在一起,以在复杂的布局中克服室内点云处理和几何形式表示中的chal lenges。基于功能的DE Cision树分类器提取了主要建筑元素,该元素用于3D空间解析的基于知识的算法中。在此基础上,优化过程生成参数化的平面图,用于最终创建体积数字模型。该方法在慕尼黑技术大学和斯坦福大学的数据集上进行了验证,用于模型放置的平均准确性约为0.08 m,用于估计元素参数的0.06 m,这突出了其产生建筑物语义数字模型的有效性。这种方法强调了AI集成在数字孪生工作流程中的潜力,以提供更多的自动交配解决方案。