β 血红蛋白病,如镰状细胞病 (SCD) 和 β 地中海贫血,其特征是血红蛋白亚基 β 基因 (HBB) 的不同突变。这些疾病的表型表现和严重程度各不相同,更严重的表现会导致输血依赖以及感染和铁过载等相关并发症。β 血红蛋白病症状在出生后迅速恶化,因为胎儿血红蛋白 (HbF) 水平开始下降。为了扭转这种下降趋势,目前的治疗计划通常涉及使用羟基脲等药物来提高 HbF 的表达水平。然而,这些治疗只能产生短暂的效果,必须持续使用。基因编辑技术,如 CRISPR/Cas9(成簇的规律间隔的短回文重复序列 - CRISPR 相关蛋白),提供了创造新疗法的机会,这些疗法可以提高 HbF 表达并可能产生永久性影响。已确定两个基因靶点可显著增加 HbF 蛋白表达,即 B 细胞淋巴瘤/白血病 11A 基因 (BCL11A) 和γ 珠蛋白基因的启动子区 (HBG1/2)。为了区分 BCL11A 和 HBG1/2 编辑的有效性,我们进行了一项荟萃分析,首先根据搜索词“β-地中海贫血”、“beta-thal”、“镰状细胞病”、“SCD”和“CRISPR”确定了 119 项可纳入的研究。根据排除和纳入标准,我们对 2018 年至 2021 年纳入研究的 8 项经过同行评审的已发表研究进行了分析。森林图是使用 R(版本 4.1.2)生成的。初步比较分析表明,与 BCL11A 相比,HBG1/2 对诱导 HbF 表达的影响显著 (p < 0.01) 更大。
摘要 - 能量 - 能力是对多核嵌入式系统计算密集型实时应用的关键要求。多核处理器启用任务内的并行性,在这项工作中,我们研究了约束截止日期零星平行任务的能量 - 有效的实时计划,其中每个任务都表示为有向的无环图(DAG)。我们考虑一个聚类的多核平台,在任何给定时间,同一群集内的处理器以相同的速度运行。提出了一个新概念,该概念被提出,以模拟运行时间期间的每项按任务和人均能量消费变化,以最大程度地减少预期的长期能源消耗。据我们所知,没有现有的工作考虑使用截止日期约束的DAG任务的能源感知的实时调度,也没有在集群的多核平台上进行。 在ODROID XU-3董事会上实施了拟议的能源感知的实时调度程序,以评估并证明其可行性和实用性。 为了补充我们的系统实验,我们还进行了模拟,与现有方法相比,通过我们提出的方法,CPU节省了高达67%的能源。据我们所知,没有现有的工作考虑使用截止日期约束的DAG任务的能源感知的实时调度,也没有在集群的多核平台上进行。在ODROID XU-3董事会上实施了拟议的能源感知的实时调度程序,以评估并证明其可行性和实用性。为了补充我们的系统实验,我们还进行了模拟,与现有方法相比,通过我们提出的方法,CPU节省了高达67%的能源。
摘要:CRISPR/Cas 最初于 35 年前在大肠杆菌中被发现,是一种防止病毒(或其他外源)DNA 入侵基因组的防御系统,它开创了功能遗传学的新时代,并成为生命科学所有分支领域的一种多功能遗传工具。CRISPR/Cas 以简便快速的方式彻底改变了基因敲除方法,但它在基因敲入和基因修饰方面也非常有效。在海洋生物学和生态学领域,该工具在“暗”基因的功能表征和基因旁系同源物的功能分化记录中发挥了重要作用。尽管它非常强大,但仍存在一些挑战,阻碍了一些重要谱系中功能遗传学的进展。本综述探讨了 CRISPR/Cas 在海洋研究中的应用现状,并评估了迅速扩大这一强大工具的部署以解决无数基础海洋生物学和生物海洋学问题的前景。
我们研究在量子计算中用随机局部操作取代纠缠操作的方法,但代价是增加所需的执行次数。首先,我们考虑“类空间切割”,其中纠缠单元被随机局部单元取代。我们提出了一种量子动力学的纠缠测度,即乘积范围,它基于两份 Hadamard 检验来限制此替换程序的成本。用先前工作的术语来说,此过程在许多情况下产生具有最小 1 范数的准概率分解,这解决了 Piveteau 和 Sutter 的一个悬而未决的问题。作为应用,我们给出了一种改进的聚类汉密尔顿模拟算法。具体而言,我们表明可以以相互作用的代价消除相互作用,该代价是它们强度乘以演化时间之和的指数,而在弱相互作用的极限下为零。我们还给出了使用“类时间切割”用测量和准备通道替换导线的成本的改进上限。我们证明了估计输出概率时匹配的信息理论下限。
摘要:随着电力系统的重组,家庭级终端用户通过整合可再生能源和智能设备并成为灵活的产消者,成为更重要的参与者。使用微电网是一种将本地终端用户聚合为单一实体并满足股东消费需求的方式。各种微电网架构是当地能源社区遵循不同脱碳策略的结果,通常在规模、技术或其他影响能源系统的因素方面没有得到优化。本文讨论了三种不同微电网设置的运营和规划方面,将它们视为本地电力市场中的个体市场参与者。这种实施使微电网之间可以进行相互交易而无需额外费用,它们可以为彼此提供灵活性和平衡。开发的模型考虑了光伏发电、日前电价和电力负荷产生的多种不确定性。从日常运营到年度规划,共介绍了九个案例研究和敏感性分析。对不同微电网设置、运行原则/目标和合作机制的系统研究,让我们清楚地了解了运营和规划效益:脱碳微电网的电气化战略比天然气和氢气技术有显著优势。以联合市场参与为目标,将不同类型的多能源微电网结合起来,其价值在年度水平上并未被证明优于相同技术类型的微电网。额外的分析侧重于将配电和输电费用引入 MG 合作模式,并让我们得出结论,这对整体运营的影响很小。
联邦学习及其在医学图像分割中的应用最近已成为一个热门的研究课题。这种训练范式存在参与机构本地数据集之间的统计异质性问题,与传统训练相比,会导致收敛速度减慢以及潜在的准确性损失。为了减轻这种影响,联邦个性化应运而生,即每个机构一个模型的联邦优化。我们提出了一种新颖的个性化算法,该算法针对不同机构使用不同扫描仪和采集参数引起的特征变化而量身定制。该方法是第一个考虑机构间和机构内特征变化(单个机构使用多台扫描仪)的方法。它基于在每个中心内计算一系列放射组学特征,捕捉每个 3D 图像体积的整体纹理,然后进行聚类分析,将所有特征向量从本地机构传输到中央服务器。然后,每个计算出的聚类分散数据集(可能包括来自不同机构的数据)用于微调通过经典联邦学习获得的全局模型。我们在联邦脑肿瘤分割 2022 挑战数据集 (FeTS2022) 上验证了我们的方法。我们的代码可在 (https://github.com/MatthisManthe/radiomics_CFFL) 上找到。关键词:联邦学习、联邦个性化、分割、脑肿瘤分割。
摘要 利用CRISPR-Cas9技术开展遗传疾病治疗已取得重大进展。本文讨论了 CRISPR-Cas9 的历史和工作原理,重点介绍了其在遗传疾病治疗中的应用。这项研究的重点包括囊性纤维化、地中海贫血和杜氏肌营养不良症等疾病。利用 CRISPR-Cas9 进行基因治疗涉及编辑特定基因以纠正致病突变,从而开辟更有效治疗的可能性。然而,该技术的使用存在各种障碍,例如可能出现脱靶效应、伦理问题和长期安全性。然而,人们正在努力提高 CRISPR-Cas9 的特异性和准确性,以便开发有效的递送方法和提高安全性成为研究的主要重点。未来,CRISPR-Cas9 可能成为一种更具针对性和个性化的基因疗法,为在分子水平上治疗遗传疾病开辟机会,并为以前难以治疗的疾病提供替代疗法。此外,该技术还有可能早期预防遗传疾病并开发更实惠的基因疗法。跨学科合作是优化 CRISPR-Cas9 潜力的关键,以确保开发出符合伦理道德且有益于未来人类健康的遗传疾病疗法。关键词:CRISPR-Cas9,遗传病,基因编辑技术,基因治疗
1 伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
硅IGBT的开发一直以更高的功率效率和更高的当前处理能力来设计优化和降低电源转换器系统的成本。在过去的三十年中,通过引入沟槽几何学[1],野外停机(FS)技术[2]和注射增强(IE)效应来取得重大进展。但是,在州绩效,切换频率和长期可靠性方面的进一步改善变得难以实现。这是因为动态雪崩(DA)在限制高电流密度操作能力方面起着关键因素[4-7]。要打破常规IGBT的基本限制,并保持与宽带差距(WBG)功率设备的竞争力,必须以可靠的方式实施创新的硅技术,以实现自由运营和显着降低功率损失,同时与WBG替代品相比保持硅的成本竞争力。这是因为无DA的操作可以降低门电阻,从而降低开关损耗并提高可靠性。沟槽簇的IGBT(TCIGBT)是唯一到目前为止已实验证明的无DA的解决方案[7-11]。其自晶状功能和PMOS操作可有效地管理沟槽门下的峰值电场分布。此外,即使将NPT-TCIGBT与FS-IGBT进行比较,固有的晶闸管操作也会提供更低的状态损失[10,11]。因此,TCIGBT提供了一种高度有希望的解决方案,可以超越当前IGBT技术的限制。