1 纳季兰大学医学院内科放射学系,纳季兰 61441,沙特阿拉伯;yealmalki@nu.edu.sa 2 世宗大学无人驾驶车辆工程系,首尔 05006,韩国;umair@sejong.ac.kr 3 Secret Minds,创业组织,伊斯兰堡 44000,巴基斯坦;engnr.waqasahmed@gmail.com 4 国立科技大学(NUST)机械与制造工程学院(SMME)机器人与智能机械工程系(RIME),H-12,伊斯兰堡 44000,巴基斯坦; karamdad.kallu@smme.nust.edu.pk 5 伊巴达特国际大学电气工程系,伊斯兰堡 54590,巴基斯坦 6 卡西姆大学医学院放射学系,沙特阿拉伯布赖代 52571;salduraibi@qu.edu.sa(SKA);al.alderaibi@qu.edu.sa(AKA) 7 纳季兰大学工程学院电气工程系,沙特阿拉伯纳季兰 61441;miditta@nu.edu.sa 8 扎加齐格大学人类医学学院放射学系,埃及扎加齐格 44631;maatya@zu.edu.eg 9 纳季兰大学应用医学科学学院放射科学系,沙特阿拉伯纳季兰 61441; hamalshamrani@nu.edu.sa * 通信地址:amad.zafar@iiui.edu.pk † 这些作者作为第一作者对这项工作做出了同等贡献。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年8月3日。 https://doi.org/10.1101/2023.08.01.551420 doi:biorxiv Preprint
在原核生物中,CRISPR(成簇的规律间隔的短回文重复序列)最初是作为防御入侵质粒和病毒的机制而开发的。Ishino 于 1987 年首次发现 CRISPR 结构。1 在其他细菌和古细菌中发现许多类似结构后,Jansen 于 2002 年创造了 CRISPR 这个绰号。2-3 后来,Mojica 及其同事推测 CRISPR 模式及其相关蛋白质可以抵御遗传影响,并可能具有免疫防御活性。4 然而,这一领域的三位主要贡献者是 Charpentier、Doudna 和 Zhang。CRISPR Cas-9 的机制首先由 Charpentier 阐明。后来 Charpentier 和 Doudna 报道了 Cas-9 介导的生化表征和系统优化。5 张是第一个在多细胞生物中实现 CRISPR Cas-9 遗传修饰的人。6
摘要:识别和分类胶质瘤脑肿瘤是医学领域的一项艰巨任务,为了延长患者的寿命,尽早识别恶性肿瘤至关重要。已经进行了医学图像分析研究以帮助检测恶性脑肿瘤。为了实现高分类性能,提取的特征必须既具有描述性又具有判别性。机器学习在分类中至关重要,因为它具有灵活性和对不同问题的适应性。我们提出了一种聚类图像和特征支持分类器 (CIFC) 以及一个深度卷积神经网络框架来对脑肿瘤图像进行分类。所提出的模型由各种分类器组成,例如:(i) 原始和分段图像特征支持的分类器;(ii) 原始和分段图像支持的分类器和 (iii) 聚类图像和特征支持的分类器。免费和开放访问的图像数据集 BRATS 2021 用于训练和测试所提出的肿瘤检测系统框架。 CFIC 的表现优于迄今为止提出的几乎所有分类器。所提出的系统的性能指标结果为灵敏度 99.76%、特异性 98.04% 和准确度 99.87%。因此,与其他现有技术相比,所提出的系统结果在肿瘤检测方面表现良好。
基因操纵工具已经改变了生物医学研究,并改善了其用于治疗目的的可能性。这些工具在许多生物体中有助于有效的基因组修饰,并已成功应用于生物医学工程,生物技术和生物医学。他们还显示了减轻遗传和非遗传疾病的治疗应用的潜力。小型干扰RNA(siRNA)和定期间隔间的短上粒细胞重复/相关蛋白系统(CRISPR/CAS)是基因操作中应用的两种工具。本综述旨在评估siRNA和CRISPR/CAS作为遗传操作的新工具的分子影响。本综述讨论了siRNA和CRISPR/CAS的分子机制,以及siRNA和CRISPR/CAS的优点和缺点。本综述还将siRNA和CRISPR/CAS之间的比较作为基因治疗的潜在工具。siRNA治疗应用是通过蛋白质敲除发生的,导致细胞损害。siRNA在mRNA水平上敲低基因表达,而CRISPR/CAS在DNA水平上永久击倒基因。毫无结论,基因操纵工具具有改善治疗策略和植物衍生产品的应用的潜力,但是必须在基因编辑的临床应用之前建立道德标准。
尽管已有有效的预防性乙型肝炎病毒 (HBV) 疫苗,但慢性乙型肝炎病毒 (HBV) 感染仍然是全球主要的健康问题。目前的抗病毒疗法无法完全治愈慢性乙型肝炎 (CHB),因为共价闭合环状 DNA (cccDNA)(HBV 的复制模板)具有持久性,因此需要开发替代治疗方法。CRISPR/Cas 系统是一种新兴的基因组编辑工具,在基因组编辑和基因治疗方面具有巨大的前景。多项体外和/或体内研究已证明 HBV 特异性成簇规律间隔短回文重复序列 (CRISPR)/相关蛋白 9 (CRISPR/Cas9) 系统在切割 HBV DNA 和 cccDNA 方面的有效性。尽管 CRISPR/Cas 技术的最新进展增强了其在临床应用抗 HBV 感染的前景,但将 CRISPR/Cas9 系统体内递送到目标部位仍然是一项重大挑战,需要在其临床应用于 CHB 基因治疗之前解决。在本综述中,我们讨论了用于靶向 HBV 感染的 CRISPR/Cas9 递送工具,重点介绍了腺相关病毒载体和基于脂质纳米颗粒 (LNP) 的 CRISPR/Cas 核糖核蛋白 (RNP) 递送治疗 CHB 的开发。此外,我们还讨论了递送工具在增强 CRISPR/Cas9 抗 HBV 感染的抗病毒功效方面的重要性。
分子,由圣保罗州梅斯基塔大学(UNESP)完成;德国明斯特大学法医学研究所(DAAD/CNPq 奖学金获得者);临床分析硕士学位,重点领域:分子生物学,毕业于圣保罗大学。 2004 年获圣埃斯皮里图联邦大学药学-生物化学学位(学士学位)。她是圣埃斯皮里图联邦大学阿雷格里校区的副教授。从事遗传学和分子生物学领域的工作,具有人类和非人类法医遗传学、SNP分析、通过DNA条形码进行物种识别以及开发新DNA分析技术的经验。 ORCID:https://orcid.org/0000-0001-8035-4199。 CV Lattes:http://lattes.cnpq.br/8176374147579841。 ggpaneto@gmail.com
许多细菌对入侵的噬菌体或质粒具有 II 型免疫力,称为成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关 9 (Cas9) 系统,用于检测和降解外来 DNA 序列。Cas9 蛋白有两个负责双链断裂的核酸内切酶(分别称为 HNH 结构域,用于切割 DNA 双链的靶链,RuvC 结构域用于切割非靶链)和一个单向导 RNA (sgRNA) 结合结构域,其中 RNA 和靶 DNA 链是碱基配对的。三种工程化的单 Lys-to-Ala HNH 突变体(K810A、K848A 和 K855A)表现出对靶 DNA 链切割的增强的底物特异性。我们在本研究中报告,在野生型酶中,在 1mM EDTA 存在下,与催化位点相邻的含 Y836 环(包括 E827-D837)内的 D835、Y836 和 D837 具有无法表征的加宽 1 H 15 N NMR 共振,而环中其余残基具有不同程度的加宽 NMR 光谱。我们发现,野生型酶中的该环在分子动力学 (MD) 模拟期间表现出三种不同的构象,而三个 Lys-to-Ala 突变体
CRISPR (clustered, regularly interspaced, short palindromic repeats) 是一种来自细菌降解入侵的病毒 DNA 或其 他外源 DNA 的免疫机制。在该机制中, Cas 蛋白( CRISP‐associated protein )含有两个核酸酶结构域,可以 分别切割两条 DNA 链。一旦与 crRNA ( CRISPR RNA )和 tracrRNA 结合形成复合物, Cas 蛋白中的核酸酶即 可对与复合物结合的 DNA 进行切割。切割后 DNA 双链断裂从而使入侵的外源 DNA 降解。