南卡罗来纳大学的心理学博士学位课程专注于培训学生从事研究,大学水平教学和其他环境的职业。学生在申请时选择主要集中度,因此认知和神经科学(CNS)是四个浓度之一(CNS,临床社区,定量心理学,学校心理学)。所有课程和研究都强调了动手培训,并通过下一代技术和为不同人群提供服务的机会进行了广泛的研究机会。
• RMC-6236 有效抑制 RAS(ON) 的所有亚型,包括致癌 KRAS、NRAS 和 HRAS 突变体以及野生型 RAS • 使用 (环丝氨酸蛋白酶 A)-RAS 胶合机制是这种广泛 RAS 信号阻断的基础 • 临床前研究显示,RMC-6236 在 842 种 RAS 驱动的细胞系中表现出广谱活性,这转化为 NSCLC、CRC 和 PDAC 的多种异种移植模型中的消退 • 初步临床数据显示,由先前“无法用药”的 RAS 突变驱动的肿瘤出现显著消退
摘要:创伤性脑损伤 (TBI) 和创伤性脊髓损伤 (SCI) 是由于外部物理损伤导致中枢神经系统 (CNS) 受损而导致的。由 CNS 创伤导致的功能障碍取决于机械冲击的方式、严重程度和解剖位置以及组织的机械特性。虽然生物机械损伤是 CNS 创伤病理生理学的启动因素,但目前尚不清楚解剖负荷分布和由此产生的细胞反应。例如,主要反应阶段包括诸如膜对离子和其他分子的通透性增加等事件,这可能会引发复杂的信号级联,从而导致长期损伤和功能障碍。损伤参数与细胞变化和随后的缺陷之间的相关性可能会导致更精确的耐受标准并促进开发更好的防护装备。此外,对损伤生物力学的理解的进步对于体外和体内实验研究的开发和解释至关重要,并且可能通过确定损伤反应时间范围内的损伤机制来开发新的治疗方法。在这里,我们讨论了与中枢神经系统创伤生物力学相关的基本概念、用于实验模拟 TBI 和 SCI 的损伤模型,以及用于改善对主要损伤机制的当前理解的新型多层次方法。
计算神经外科 (CNS) 实验室展示 亲爱的同事们, 在当前的疫情环境中,我们已经学会了如何应对社交距离、任何形式的限制和不确定的时期。尽管如此,我们仍努力向前迈进,在可能和可行的情况下继续我们的外科和临床活动,挑战自己进行远程工作,并在虚拟环境中相互交流(这很可能随着时间的推移变得越来越正常,即使在疫情危机结束时也是如此)。 一些研究已经停止,主要是基于面对面或湿实验室实验的研究,而其他研究并没有中断,例如涉及统计分析、荟萃分析和计算分析的研究。 从这个角度来看,我想借此机会分享一些在计算神经外科实验室完成和/或正在进行的研究,尽管受到校园访问限制的限制,但仍继续远程工作(使用可用数据集、通过远程访问我们的实验室工作站进行计算、与参与研究的学者建立联系等)。计算神经外科是一个新领域,新到在科学界甚至没有自己的位置。尽管过去几年中,许多神经外科医生都参与了计算建模在神经外科和临床神经科学中的应用,但在我们的领域中,“计算”这个形容词始终与“神经科学”联系在一起,被解释为“使用数学工具和理论研究大脑功能的研究领域。它还可以结合电气工程、计算机科学和物理学的各种方法来了解神经系统如何处理信息”(《自然》杂志的定义)。在过去几年中,计算建模、高级数学分析、分形几何、人工智能等在理解、诊断和治疗受神经外科疾病影响的患者方面的应用已经以零星和非系统的方式进行了(并发表了)。计算神经外科 (CNS) 实验室成立于 2019 年,得益于资金和
军事当局始终致力于按照国际电信联盟(ITU)的规定使用频谱,包括其公约和《无线电规则》。尽管如此,将足够的军事立场与全球民航立场相结合,推动向国际电信联盟世界无线电通信大会(WRC)推进,至关重要。将军民融合方面纳入航空频谱战略,对于促进军民需求共存至关重要。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
在神经肿瘤学中,MR成像对于获取详细的脑图像至关重要,以鉴定肿瘤,计划治疗,指导手术干预并监测肿瘤的反应。AI在神经影像学方面的最新进展在神经肿瘤学方面具有有希望的应用,包括指导临床决策和改善患者管理。但是,缺乏对AI如何进行预测的明确性阻碍了其临床翻译。可解释的AI(XAI)方法旨在提高信任度和信息性,但其成功取决于考虑最终用户(临床医生)的特定背景和偏好。以用户为中心的设计(UCD)在迭代设计过程中优先考虑用户需求,并涉及用户,提供了设计针对临床神经肿瘤学量身定制的XAI系统的机会。本综述着重于神经肿瘤患者管理的MR成像解释的交集,可解释的用于临床决策支持的AI以及以用户为中心的设计。我们提供了一种组织必要概念的资源,包括设计和评估,临床翻译,用户体验和效率增强,以及改善神经肿瘤患者管理的临床结果的AI。我们讨论了多学科技能和以用户为中心的设计在创建成功的神经肿瘤学系统中的重要性。我们还讨论了以人为中心的决策过程中嵌入的可解释的AI工具,并且与完全自动化的解决方案不同,可能会增强临床医生的绩效。遵循UCD原则以建立信任,最大程度地减少错误和偏见,并创建适应性的软件有望满足医疗保健专业人员的需求和期望。
下一代空中交通管理 (NG-ATM) 现代化项目(例如欧洲的 SESAR 和美国的 NextGen)正在引入新颖的系统设计,以满足日益增长的空中交通需求。在通信、导航、监视/空中交通管理 (CNS/ATM) 和航空电子设备 (CNS+A) 环境中,引入了四维轨迹 (4DT)、基于系统范围信息管理 (SWIM) 的网络架构和更高水平的自动化等创新概念。随着无人机进入各种空域,机载、地面和卫星通信和导航等支持系统之间的互操作性对于成功实施下一代概念至关重要。在 CNS/ATM 框架中,互操作性被定义为系统向其他系统提供服务和接受其他系统的服务以及使用交换的服务使其有效运行的能力。本文对现有的互操作性模型进行了比较分析,并推荐了一种用于 CNS/ATM 系统的综合互操作性模型。推荐的模型基于空间信号 (SIS)、系统和人机界面 (HMI) 互操作性级别的本体。这项评估研究提供了一个新颖的框架来定义认证流程,以评估各种 CNS/ATM 系统之间的互操作性水平。
1.1 2023 年 5 月 2 日至 4 日,约旦民航管理委员会 (CARC) 在约旦安曼主办了 MIDANPIRG 通信、导航和监视小组 (CNS SG/12) 第十二次会议。 2. 开幕式 2.1 会议由约旦 CARC 空中交通管理主任 Mahmoud Al Lahem 先生主持。Al Lahem 先生欢迎与会者来到约旦。 2.2 Al Lahem 先生强调指出,约旦意识到在交通量增长是可持续性发展的结果的情况下主办这些活动的重要性,通过不断提高其安全、安保、效率以及在国家、地区和全球层面的协作与合作。此外,他强调需要共同努力确定挑战并提出行动 / 解决方案,以促进实施与 CNS 相关的重要 ASBU 模块。 2.3 最后,Al Lahem 先生感谢与会者的出席,并祝愿会议讨论圆满成功并在安曼逗留愉快。 3. 出席情况 3.1 共有来自八 (8.) 个国家(巴林、埃及、伊拉克、约旦、阿曼、卡塔尔、沙特阿拉伯和阿联酋)和一个 (1) 国际组织/行业(IATA)及总部的五十二 (52) 名代表出席了会议。与会者名单见附件 A。 4. 官员和秘书处 4.1 会议注意到,CNS SG 主席 Saleh Al Harthy 先生未能出席会议,因此会议由 H.E. Mr. 主持。