介绍了一种包括热集成在内的电转甲烷工艺设计的上层结构优化方法。沼气厂产生的二氧化碳被视为碳源。该上层结构包括七层中 13 种处于当前发展阶段的电转甲烷工艺替代工艺技术。针对不同的情形,确定了产品化学能量最高效的工艺和资本与年总成本最具成本效益的工艺。我们考虑通过公用设施进行间接热集成,在所有情形下,这被确定为能源效率和工艺成本的主要贡献者。产品甲烷必须满足进入天然气管网的要求。天然气管网的要求对最高效的工艺路线有直接影响。如果可以将氢气输送到天然气管网,则所需的工艺单元数量就会减少。此外,热交换器网络的扩展决定了效率和成本之间的权衡,而不是单元操作的选择。
天然岩石风化有可能将CO 2的大约10 5吉甘作为固体碳酸盐存储。1,2然而,将硅酸盐和CO 2转化为碳酸盐的转化速度很慢,导致每年仅0.13 Gigatons的矿化。1这里,我们演示了一个连续的流量电化学反应器,能够以惰性碳酸盐矿物质的形式捕获和永久存储CO 2。通过电解质产生H +和OH - 在由Ca 2+选择性膜分隔的腔室中,这种“风化电解油”可加速岩石风化的岩石,最多3个数量级。H+将硅酸盐分解为化学室中的反应性Ca 2+物种,而OH - 与CO 2和Ca 2+反应,在相邻的阴极室中形成Caco 3矿物。我们表明,风化电解仪能够衍生自烟气和空气的矿化CO 2,同时避免将CO 2与常规捕获单元隔离开来。
Ahcene Sahtout(阿尔及利亚),Djazia Dehimi(阿尔及利亚),Mohamed Oundi(阿尔及利亚),Olimpia Torres Barros(Andorra),AdriánBetti(Argentina),Andres Quintana(Andres Quintana(Argentina),Argentina)阿萨德利(Asadli)(阿塞拜疆),Terrance Fountain(Bahamas),Abdulrahman Ahmed Showaiter(Bahrain),Galina Pyshnik(Belarus),Olegovich Pruchkovskiy(Belarus),Katia Huard(Belgium) C Choden(不丹),伊万·阿里亚加(Ivan Aliaga)(玻利维亚(Plurinational of)),理查德·耶稣(RichardJesúsLópezVargas)(玻利维亚(玻利维亚(Plurinational of)),威尔逊·萨利纳斯·奥利瓦雷斯(Plurinational) Iveira(巴西),Viviane Hoffmann(巴西),Aimi Jamain(Brunei Darussalam),Hardiyamin Barudin(Brunei darussalam),Radi Ignatov(保加利亚),Slaveika Nikolova(Slaveika Nikolova) (中国)和),何塞·马林(智利),路易斯·梅德尔·埃斯皮诺萨(Luis Medel Espinoza)(智利),蒙塞拉特·阿兰达(智利),Yan Zheng(中国;中国,香港SAR),凯蒂·霍恩(中国,香港萨尔),王(中国,澳门SAR),奥斯卡·里卡多·圣塔洛佩兹(哥伦比亚),安德烈斯·罗德里格斯·佩雷斯(AndrésRodríguezPérez) Oatia),Gavriel Efstratiou(塞浦路斯),Ioanna Yiasemi(塞浦路斯),Nasia Fotsiou(塞浦路斯),Katerina Horackova(Czechia),Viktor Mrravcik(捷克)穆罕默德·法拉格(埃及),阿尔玛·塞西莉亚·埃斯科巴尔·德·梅纳(Alma Cecilia Escobar de Mena)(萨尔瓦多),卡门·莫雷纳·巴特雷斯·德·格拉西亚斯(Carmen Morena Batres de Gracias)(萨尔瓦多)),查尔斯·奥布塞里·康斯(Ghana) OS Papanastasatos(Greece),Ioannis Marouskos(Greece),Ioulia Bafi(Greece),Manina Terzio(Greece),Robert G. Maldona(Guerra),Atemala,Atemala),Rachel victoria ulcena(Haiti) CSABA HORVATH(匈牙利),Ibolyacsákó(匈牙利),Peter Foldi(匈牙利),Agus Irianto(印度尼西亚),Mohammad Narimani(伊朗)),Imad Abdel Raziq Abdel Raziq Abdel Gani(Iraq)伊莫尼(意大利),Yuki Maehira(日本),Jamil Alhabibeh(约旦),马拉克·马希拉(Malak al-Mahirah)(约旦),阿尔玛·阿吉巴耶娃(Alma Agibayeva)(哈萨克斯坦),斯蒂芬·吉玛尼(肯尼亚),阿克利·阿曼诺夫(Akyl Amanov)(吉尔吉斯斯坦)吉根(Lithuania)g),纳丁·伯恩(Nadine Berndt)(卢森堡),丽塔·卡多斯·塞克斯(Rita Cardoso Seixas)(卢森堡),尼克马特·尤索普(Nikmat Yusop)(马来西亚),约翰·泰斯塔(Malta)(马耳他),维克多·佩斯(Victor Pace),马耳他(Malta)格罗夫),马克·蒙特格罗文(Mark Montegroven),情人节(Valentine gro),阿卜杜勒(Abdelhafid)El Maaroufi(摩洛哥),Abderrahim Matraoui(摩洛哥)(摩洛哥),Ayoub Aboujaafer(摩洛哥),El Maaroufi Abdelhafid(摩洛哥) UNG(缅甸),缅甸林(荷兰),十字军(荷兰),塞兰德(Therlands),Vincent van Beest(New Zealand),Lauren Bellamore(新西兰),ManuelGarcíaMorales(Nicaragua) Ane Odili(尼日利亚),Ngozi Ovijian(挪威),Daniel Oguela(挪威),Bilgrei(挪威),Mahmood Al Arbi Sultante(阿曼),Mohamed Amin(阿曼),Sayed sayed sijjeell haider(pakistan) Z(Paraguay),Juan Pablo Lopez(Paraguay),葡萄牙(Paraguay),Lillian(Paraguay),MathíasJara(Paraguay),Sandra Morales(Peru),Corazon P. Mamigo(Philippines) San Pascual(菲律宾),Lukasz Jedrusza(Pogal),Sok(Pogal),Ana Fierza(Pogal),Quatar Arq(Qatar),Donghyun Kim(大韩民国),Yongwhee Kim(Yong Whee Kim(Yonghee Kim)(韩国共和国),Victor tacu(Victor) UD Alsabhan(沙特阿拉伯),杜桑·伊利克(塞尔维亚),伊夫林·洛(Evelyn Low)(新加坡),梅尔维·安德鲁(Melvyn Andrew)(新加坡),伊娃·德比纳罗娃(EvaDebnarová)(斯洛伐克) ,ElenaAlvarezMartín(西班牙),Thamara Darshana(Sri Lanka),星期五(瑞典),Jennie Hadenberg(瑞典),Johan Ragnemalm(瑞典) (瑞士),Saidzoda Firuz Mansur(Tajikistan),Prang-Anong Saeng-Arkass(泰国),Mouzin(泰国),Timor-leste,Timor-leste,Awi Essossimna(Trinidad and Tobago)(Trinidad and tobago)(Trinimer)(Trrimane andkago)(Trirame) e),苏尔·奥鲁克曼(Türkiye),奥利娜·普加赫(Olena Pugach)(乌克兰),奥尔加·戴维尼科(Olga Davidenko)(乌克兰),维塔·德鲁兹(Vita Druzhynina)(乌克兰),艾哈迈德·阿里·阿里拉特(Ahmed Ali Amirates),乌克兰(乌克兰),阿尔兹米罗·阿尔贝罗·阿尔贝托(Alzemiro Alberto)(乌克兰)。Kerry Eglinton (大不列颠及北爱尔兰联合王国)、Maria Fe Caces (美利坚合众国)、Nicholas Wright (美利坚合众国)、Elisa Maria Cabrera (乌拉圭)、Khatam Djalalov (乌兹别克斯坦)、Alberto Alexander Matheus Melendez (委内瑞拉玻利瓦尔共和国)、Carlos Javier Capote (委内瑞拉玻利瓦尔共和国)、Elizabeth Pereira (委内瑞拉玻利瓦尔共和国)、Ronnet Chanda (赞比亚)、Ashley Verenga (津巴布韦)、Evelyn Taurai Phillip (津巴布韦)、Anan Mohammad Hassan Theeb (巴勒斯坦国)、Mutaz Ereidi (巴勒斯坦国)、Penny Garcia (直布罗陀)
WP WP 8 CO 2群集和价值链设计负责人:K。Harboe(DGC)撰稿人作者:J.O.Christensen(DGC),S。Cuthbert(DGC)评论者:Nikolai Andrianov(GEUS)到期日期:2024-04-04-30日期:2024-04-04-30版本:1联系人:1联系人:KHA@DGC.DK.DK散发级别:X PU:X PU:X PUPUL:公共□CO:COMPORT□COMPLIAL□委员会(包括委员会)
2023年的排放量增加1.1%的增加约为4.1亿吨(MT CO 2)。排放百分比的增长百分比大大比全球GDP增长慢,该增长率约为2023年3%。去年,CO 2的最新趋势比全球经济活动更慢。在2023年结束的十年中,Global Co 2排放量增长略高于0.5%。这不仅是由于共同19大流行:尽管在2020年的排放量急剧下降,但到第二年,它们已经反弹到了竞争前的水平。也不是由于全球GDP增长缓慢而引起的,在过去的十年中,每年平均每年3%,这与过去50年的年平均水平一致。
0# 1 !6,722793!-897A-3:6!82M!0# 1 !26N+625.-5793!-3A!.65635793!57,6! D+,'4,/+#202=.,3',#"70.#='4+,'$4.0.3"4.2#'25' *6 ('"3'"#'"04,%#"4.1,'/"%72#'32$%/,'52%'4+,'8%29$/4.2#'25' /+,-./"03'92'#24'".-'"4'*6 ('3,V$,34%"4.2#:'7$4'"4'"'-2%,'3$34".#"70,'8%29$/4.2#'25'9,3.%,9'/"%72#K7"3,9' 8%29$/43;'D+,'%,4,#4.2#'4.-,'25'/"%72#'.3'4+,%,52%,'#24'"'%,0,1"#4'.#9./"42%'42'"33,33'4+,'.-8"/4'25'3$/+' 4,/+#202=.,3;'<,/&/0.#='"'/"%72#'"42-'5%2-'*6 ('/"#'"12.9'4+,'$4.0.3"4.2#'25'"#'"99.4.2#"0'1.%=.#'5233.0'/"%72#' 5,,9342/C:'"#9'*6 ( '1"02%.3"4.2#'4,/+#202=.,3'/"#',55,/4.1,0&'/2#4%.7$4,'42'*6 ( ',-.33.2#'"12.9"#/,'.#'4+,' /+,-./"0'.#9$34%&;'D+,'*6 ( ',-.33.2#3'%,9$/4.2#'25'3$/+'*6 ('1"02%.3"4.2#'4,/+#202=.,3'#,,93'42'7,',1"0$"4,9' "=".#34',L.34.#='8%29$/4.2#'%2$4,3'@.4+'"#'"88%28%."4,'-,4+29202=&'"#9'9,5.#.4.2#'25'3&34,-'72$#9"%.,3;'' "
摘要我们提出了一个非常简单的模型,用于估算全球碳发射方案的时间依赖大气CO 2浓度C(t),作为单个输入数据。我们根据参数得出一个单个线性微分方程,该方程是根据参数从全球碳项目的定量数据和CO 2浓度的MAUNA LOA数据估计的。通过将模型与1960年至2021年期间与相当良好的定量一致性进行比较,并与良好的定性一致性进行了比较。最后,建模了一些新的排放方案。尽管有几个关于绝对定量预测的缺点,但该模型有两个重要的优势。首先,使用简单的可编程电子表格程序(例如Excel)可以轻松地执行它。第二个输入排放方案可以轻松更改,并在碳周期和气候变化的本科和研究生课程中立即看到预期的变化。
