通过电化学方法将 CO2 还原 (CO2R) 为乙烯和乙醇,可以将可再生电能长期储存在有价值的多碳 (C2+) 化学品中。然而,碳 - 碳 (C - C) 偶联是 CO2R 转化为 C2+ 的速率决定步骤,其效率低下且稳定性差,尤其是在酸性条件下。在这里,我们发现,通过合金化策略,相邻的二元位点可以实现不对称的 CO 结合能,从而促进 CO2 到 C2+ 的电还原,超越单金属表面上由缩放关系决定的活性极限。我们通过实验制备了一系列 Zn 掺入 Cu 催化剂,这些催化剂表现出增强的不对称 CO* 结合和表面 CO* 覆盖率,可在电化学还原条件下实现快速的 C - C 偶联和随之而来的加氢。进一步优化纳米界面处的反应环境可抑制氢气的释放并提高酸性条件下的 CO2 利用率。结果,在弱酸性 pH 4 电解质中,我们实现了 31 ± 2% 的高单程 CO 2 到 C 2+ 产量,单程 CO 2 利用率 > 80%。在单个 CO 2 R 流电池电解槽中,我们实现了 91 ± 2% 的 C 2+ 法拉第效率,其中乙烯法拉第效率高达 73 ± 2%,全电池 C 2+ 能量效率为 31 ± 2%,在 150 小时内以商业相关电流密度 150 mA cm − 2 实现 24 ± 1% 的单程 CO 2 转化率。
全球能源需求不断增长及其相关的温室气体排放所造成的能源危机促使人们迫切需要控制和减轻大气中的二氧化碳水平。利用二氧化碳作为碳库生产增值产品是循环经济的基石。在二氧化碳利用策略中,通过电化学还原二氧化碳转化为燃料和化学品由于其多功能性和最终产品的灵活性而蓬勃发展。尽管 C 2 和 C 2 + 化合物在化学和经济上是更具吸引力的目标,需要先进的催化材料,但其中大多数研究都集中在 C 1 产品上。尽管 C 2 + 产品的形成途径复杂,但它们的多种多样的应用促使人们寻找合适的电催化剂。在这篇综述中,我们全面收集和分析了 C 2 + 产品方面的进展,不仅考虑了催化剂设计和电化学特性,还考虑了技术经济方面,以设想最有利可图的方案。这项最先进的分析表明,将 CO2 电化学还原为 C2 产品将在化学工业脱碳中发挥关键作用,为低碳未来铺平道路。
二氧化碳在全球温度循环中发挥的关键作用引发了人们对碳捕获和储存的持续研究关注。在众多选择中,锂-二氧化碳电池最引人注目,因为它不仅可以将废弃的二氧化碳转化为增值产品,还可以储存可再生能源产生的电能并平衡碳循环。该系统的开发仍处于早期阶段,面临着二氧化碳引入带来的巨大障碍。本综述详细讨论了电极、界面和电解质面临的关键问题,以及解决这些问题所需的合理策略,以实现高效的二氧化碳固定和转化。我们希望本综述能为全面了解锂-二氧化碳电池提供资源,并为未来探索可逆和可充电的碱金属二氧化碳电池系统提供指导。
更好地了解异质性对捕获机制的影响,并揭示了低到中级的异质储层(具有足够的孔隙率)可能是CO 2存储的有前途的选择,因为它会增加溶解度捕获。26•Gershenzon等。 对小级异质性对深盐含水层中CO 2捕获过程的影响进行了研究。 他们发现,各种材料的毛细管压力入口点的变化可能导致CO 2被困在异质介质中。 他们得出的结论是,高度异质储层中的毛细血管捕获机制可能显着胜过那些在较不异质的储层中的毛细管捕获机制。 27最终压力26•Gershenzon等。对小级异质性对深盐含水层中CO 2捕获过程的影响进行了研究。他们发现,各种材料的毛细管压力入口点的变化可能导致CO 2被困在异质介质中。他们得出的结论是,高度异质储层中的毛细血管捕获机制可能显着胜过那些在较不异质的储层中的毛细管捕获机制。27最终压力
全球可持续发展在有效利用CO 2方面面临着重大挑战。同时,CO 2 BIO逻辑固定提供了有希望的解决方案。CO 2具有最高的氧化态( + 4价态),而典型的多碳化学物质的价态较低。CO 2还原反应的Gibbs自由能(δG)通常是正的,这将使输入不同形式的能量。尽管生物逻辑碳固定过程对操作很友好,但必须克服热力学障碍。使这种反应发生得很有效,可以提高CO 2生物固定效率的各种策略。本文回顾了优化CO 2生物固定的最新进展,并打算为实现有效的CO 2的生物利用提供新的见解。首先概述了各种碳固定反应的热力学特性,并提出了CO 2生物固定的优化方向。随后提供了催化机制,优化策略和挑战的全面概述。随后,讨论了提高生物碳固定效率的潜在途径,包括ATP供应,减少电源,能源供应,反应堆设计和碳富集系统模块。此外,总结了有效的人造碳固定途径并分析。最后,为了不断提高生物碳固定效率的研究方向而有前景。
Coal with 90% CCS Size (MW) 418 1083 377 650 650 650 First Year Available 2028 2028 2030 2028 2030 2030 Lead Time (Years) 3 3 3 4 4 4 Availability 87% 87% 87% 85% 85% 85% Vintage #1 (2028) Heat Rate (Btu/kWh) 6,431 6,370 8,638 Capital (2022$/kW) 1,118 989 3,789 Fixed O&M (2022$/kW/yr) 15.87 13.73 45.68 Variable O&M (2022$/MWh) 2.87 2.10 5.06 Vintage #2 (2030) Heat Rate (Btu/kWh) 6,431 6,370 7,124 8,638 9,751 12,507 Capital(2022 $/kW)1,096 969 2,539 3,717 4,624 5,979固定O&M(2022 $/kW/yr)15.87 15.87 13.73 31.06 31.06 45.68 61.11.11 67.11 67.11 67.02可变O&m(20222 $/m Wh.2.87 7.57 7 77 7 77.37 7 77.110 6.87 and Wh) #3(2035)热率(BTU/kWh)6,431 6,370 7,124 8,638 9,751 12,507资本(2022 $/kW)1,054 932 2,396 3,538 4,385 4,385 4,648固定O&M(20222 $/kW/y/kw/yr)15.68 7.68.68.68.68.68.68.68.68.68.68.68.68.68.68.68.lr rr 61.11 67.02变量O&M(2022 $/MWH)2.87 2.10 6.57 5.06 7.97 12.35复古#4(2040)热率(BTU/kWh)6,431 6,431 6,370 7,124 8,638 8,638 9,751 12,507 Capital(20222 $/KW) 4,138 5,309固定O&M(2022 $/kW/yr)15.87 13.73 31.06 45.68 61.11 67.02变量O&M(2022 $/MWH)2.87 2.10 2.10 6.57 6.57 5.06 7.97 5.06 7.97 12.35葡萄酒#5(2045)葡萄酒#5(2045)66,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 r k whe tem k btu a btu btu btU 8,638 9,751 12,507 Capital (2022$/kW) 968 856 2,105 3,160 3,884 4,960 Fixed O&M (2022$/kW/yr) 15.87 13.73 31.06 45.68 61.11 67.02 Variable O&M (2022$/MWh) 2.87 2.10 6.57 5.06 7.97 12.35复古#6(2050-2055)热率(BTU/kWh)6,431 6,370 7,124 8,638 8,638 9,751 12,507 Capital(2022 $/kW)922 816 816 1,958 2,966 3,628 4,628 4,628 4,612 Y.1 13.7 Yr(20222 $&M(20222) 31.06 45.68 61.11 67.02变量O&M(2022 $/MWH)2.87 2.10 6.57 5.06 7.97 12.35
化石燃料对这些活性的燃烧产生各种温室气体的排放,包括二氧化碳(CO 2),甲烷(CH 4)和一氧化二氮(N 2 O)。这些活性还会产生其他空气污染物,例如一氧化碳(CO),氮(NO X)的氧化物,非甲烷挥发性有机化合物(NMVOC),颗粒物和二氧化硫(SO 2)。尽管这些气体不是直接的温室气体,但有些气体(CO,NO X,NMVOC)确实有助于气候变化。此外,该来源的许多排放研究都集中在这些污染物上,这些污染物是针对减少的(IMO测量,附件1)。作者认为,合并这项重要和相关的研究的附加价值提供了足够的理由,可以将这些气体包括在讨论中。
Phanerokoic碳循环:CO 2和O 2;罗伯特·A·伯纳(Robert A. Berner),纽约,牛津大学出版社,2004年,158页,$ 99.50。,碳周期的内部运作仍有待理解,这一事实可以清楚地表明,即使在发现之后20年,大气CO 2的浓度与大陆冰的浓度与大陆冰块的共同变化,通过一系列强烈的冰川循环(在地球历史的最后2000年)仍然存在。本书的重点在于时间尺度的时间要比这一轨道诱发的冰川和脱气周期的100,000年期更长。在较长的时间尺度上,伯纳(Berner)限制了他的注意力,通过phanerozoic eon(0 - 540 mA),他对大气CO 2的演变的推断是基于碳循环在准平衡模式下运行的假设。最近已经证明了该假设的植物学时代(0 - 60 MA)的Cenozoic时代,以及Rothman等人(2003)(2003年)的前寒武纪(540 - 550 MA)的Ediacaran时期的一部分。这些测试得出了一个总体的结论,即,对于测试的phanerokoic间隔,基于稳态假设的伯纳(Berner)推论是相当合理的。鉴于此类测试尚未与他的方法论基础的主要假设相矛盾,所以伯纳关于这个重要主题的简洁书值得我们引起我们的认真关注。伯纳对整个Phanero-Zoic Eon浓度的演变的预测,如GeoCarb III模型所示(Berner and Kothavala,2001年),最近在此间隔中,O 2和CO 2的变化的重新填充的Geocarbsulf模型(bernera和kothera aberner abernera and aberner aberera y more to n of bernera)通过采用适当简单的表面气候模型来确定其预测的CO 2水平是否与这些推论有关的特定时期是否可用的特定时期(例如,请参见Hyde等人,2006年)。尤其如此,因为这本书确实提供了对这种方法的清晰说明,并详细讨论了他所使用的数据以及对他模型对一系列独立约束进行测试预测的跨检查。首先区分他所说的“短期”和“长期”碳循环,其中构成了他方法论的基础的准平衡的假设,这本书继续在4个简短的章节中继续以解决产生Phanerozoic CO 2重建所需的主要投入。在第2章中介绍了海洋在长时间尺度上控制大气CO 2的钙硅酸盐钙硅酸盐的大陆化学风化过程;第3章中讨论了在有机物和碳酸盐海洋中涉及的过程,最后在第4章中讨论了CO 2和CH 4从地球内部和海洋中脱离的过程。本书的最终章节本书的第5章通过讨论GeoCarb III模型,总结了Berner通过Phanerozoic的大气CO 2变化结果,该结果最近已随着GeoCarbsulf的出版而更新。
摘要:为了响应越来越多的气候关注,精确的工业二氧化碳(CO2)排放预测至关重要。采用先进的机器学习(ML)技术,本研究着重于使用来自数据数据集中的全球数据(包含有关水泥,煤炭,燃料,燃烧,天然气和石油工业的年度排放信息)的全球数据的预测工业二氧化碳排放。探索了包括支持向量回归(SVR),线性回归和XGBoost在内的各种回归模型,主要重点是时间序列预测年度CO2排放的模型。利用时间序列的预测,排放数据中复杂的时间趋势是有发现的,提供了增强的预测性见解。CO2预测文献进行了审查,收集和预处理数据,并实施了各种ML算法,然后进行了超参数调整。经过严格训练和评估的模型产生准确的排放预测。结果强调了由斯坦福大学与Facebook Inc.开发的Transformer模型和神经先知图书馆的出色表现,RMSE得分为416.58和470.30,与349.07和380.40相比,MAE的MAPE得分为0.01,MAPE得分均为0.01,相对较低。DEEPTCN还表现出竞争性的预测能力,但缺乏变压器模型和神经先知模型的准确性。与神经先知和变形金刚相比,包括Arima,Naive预测,自动回归(AR),指数平滑和Sarima滞后的传统模型。这些发现强调了ML在推进可持续的环境管理方面的有希望的作用,并为随后的研究努力铺平了道路。关键字:二氧化碳排放,工业排放,可持续性,环境AI,机器学习,时间序列预测。
(1)开发与碳捕获和利用率及规模相匹配的 RCC 技术(2)RCC 系统在转换过程中不得损害捕获材料(即捕获材料必须可回收利用)(3)由吸附剂和催化活性组分组成的双功能材料。例如,氧化钙 (CaO) 可用作吸附剂,金属物质可催化吸附的 CO2 的转化。
