摘要在这项工作中,我们回顾了基于氟化金属有机前体的化学溶液沉积(CSD)在使用化学溶液沉积(CSD)方面取得的最新进展,从而增强了超导reba 2 Cu 3 O 3 O 7(Rebco)膜和涂层导体(CCS)。首先,我们研究了基于新型低氟金属溶液的溶液制备,沉积和热解相关的步骤的进步。我们表明,可以使用一种新型的多功能胶体溶液(包括预制的纳米颗粒(NP))来引入人工钉中心(APC)。我们分析了如何在热解过程中解散发生的复杂物理化学转化,目的是最大化膜厚度。了解成核和生长机制对于使用自发隔离或胶体溶液方法进行微观结构的微观调整而言至关重要,并使工业可扩展此过程。高级纳米结构研究已深刻地改变了我们对缺陷结构及其家谱学的理解。这是高度浓度的随机分布和定向的BAMO 3(M = ZR,HF)NP所起的关键作用,从而增强了APC的浓度,例如堆叠断层和相关的部分脱位。将缺陷结构与临界电流密度j C(H,T,θ)相关联,可以在整个H -T相图中严格控制涡旋固定属性并设计涡流固定景观的一般方案。我们还指通过转移
摘要:在本研究中,通过化学共沉淀法成功合成了聚丙烯酰胺涂层的磁铁矿纳米颗粒(PAM-MNP),并被用来通过批处理实验从水溶液系统中去除最消耗的Imidacloprid杀虫剂。FTIR,FESEM,XRD,TGA,VSM和UV-VIS分析用于分析合成的纳米颗粒的生理化学特征。研究了影响因素,包括pH,杀虫剂浓度,吸附剂剂量,接触持续时间和温度,以有效地去除咪二藻。结果表明,在100分钟后,消除了96.71%的米达普里德。吸附动力学的实验结果与伪第二阶动力学模型非常匹配。此外,Temkin吸附等温线模型比Freundlich和Langmuir模型更好地拟合吸附等温线。基于热力学研究(自由能的变化,焓变和熵变化),IMC杀虫剂吸附过程到PAM-MNP的表面上是放热的和自发的。使用解吸测试进一步研究了这些纳米吸附剂的可重复性。这些研究的结果表明,聚丙烯酰胺涂层的磁铁矿纳米颗粒具有良好的吸附能力,并且可以使用这些纳米添加剂来处理包括杀虫剂咪二氯氯氯酸作为致死污染物的废水。
Leila Mohammadi*, Mohammadreza Vaezi Department of Nano Technology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran Abstract: In this paper, a highly efficient and reusable catalyst through step-by-step post-synthesis modification of UiO-66- NH 2 metal-organic framework (MOF) was supported with nitrogen-rich as organic ligand in order to催化剂的合成名为UIO-66-NH 2 @ 5-氨基曲唑/au-nps [1]。这项研究是通过金属有机框架UIO-66-NH 2鉴定新合成的MOF纳米催化剂,其中氨基群(-NH 2)是一种有效的MOF,可通过5-氨基甲唑倍唑和通过Gold-nanoparticles稳定以及有效的Catalyst uio-666-NH 2-apeene @ 5-Aminot @ 5-aminot @ 5-aminot @ 5-aminot @ 5-aminot @ 5-aminot @ 5-aminot @ 5-aminot @ 5--5- amiNPARE。催化剂已应用于已研究的制备propar胺的执行(方案1)。所提出的催化剂代表了促进绿色水生培养基中的制备propargyl胺反应的优质催化性能[2]。在轻度条件下,生产力催化剂的结果以良好至优异的产率完成,这证明了含有金纳米颗粒的优质活性异质催化剂。此外,建议的催化剂代表了出色的可重复性性,而在活动中没有明显损失9个顺序运行。此外,使用不同的分析(例如FTIR,XRD,SEM,EDS,TEM和BET)进行了制备的纳米材料的表征,结果证明了UIO-66-NH 2/APTMS/5-AMINOTERTRAZOLE/AU-AU - AU - AU - Nanocomposite的成功合成。关键字:纳米结构,多孔金属有机框架,propargyl胺,金纳米颗粒
我们提出了一种基于热荧光的低频场测量和成像新方法。在介绍了该技术的原理和实验装置之后,我们展示了通过记录发光磁性薄膜的荧光信号,可以在相对较大的表面上几乎瞬间获得磁场制图。各种来源发射的电磁场的表征是一个重要问题,无论是民用还是国防应用(磁线圈、天线、电信、雷达、民用和军用航空、医学等)。可以通过单个探针执行电磁场测量以获得空间局部结果。对于可视化磁场的空间分布(历史上从沉积在一张纸上的铁屑中获得),有几种已知技术可用 [1 - 3]。使用移动探针的扫描系统是一种常见的商业解决方案 [4]。随着法拉第磁光成像 [5] 的发展,以及电子显微镜中洛伦兹或全息技术 [6] 的小规模发展,静态磁场的直接成像已经发展起来。集成电路和超大规模集成 (VSLI) 设备的近场测量可以通过使用空间分辨率为几百微米或更低的小探针扫描来解决 [6,7]。这种分辨率确实非常适合 EMC 和 EMI 测量,因此受到国际标准 (IEC61967 和 IEC62132) 的推荐 [8]。对于动态场观测,适当的方法是基于频闪成像,通过铁磁传感器的磁化变化实时演变磁场,直至亚纳秒级(例如,参见 M.R. 的评论。Freeman 等人。[10]。然而,这些技术对于常规表征来说相当复杂且耗时。在相对较短的时间内获得磁场映射更加困难。具有竞争力的
Nahyun Shin、Moonsu Kim、Jaeyun Ha、Yong-Tae Kim、Jinsub Choi。柔性阳极 SnO2 纳米多孔结构均匀涂覆聚苯胺,作为锂离子电池的无粘合剂阳极。《电分析化学杂志》,2022 年,914,第 116296 页。�10.1016/j.jelechem.2022.116296�。�hal-03688072�
完整作者列表: Park, Janghoon;马萨诸塞大学阿默斯特分校,聚合物科学与工程 Hu, Xiyu;马萨诸塞大学阿默斯特分校,聚合物科学与工程 Torfeh, Mahsa;马萨诸塞大学阿默斯特分校,电气与计算机工程 Okoroanyanwu, Uzodinma;马萨诸塞大学阿默斯特分校,聚合物科学与工程 Arbabi, Amir;马萨诸塞大学阿默斯特分校,电气与计算机工程 Watkins, James J.;马萨诸塞大学阿默斯特分校,聚合物科学与工程
在法国核研究所的框架下,CEA 与 AREVA 和 EDF 合作开发了铬涂层,旨在保护当前的锆合金核燃料包层材料免受高温蒸汽氧化(尤其是在意外条件下)的影响。本文重点介绍了锆合金-4 和基材上的铬涂层包层的最新研究结果。AREVA 发表了一篇补充论文 [1]。图中显示了铬涂层的典型制造微观结构。在 415°C(蒸汽,100 巴)下对未涂层参考材料和铬涂层锆合金-4 基样品进行了初步高压釜氧化试验,结果显示上一代 Cr 涂层的制备结果非常令人鼓舞。此外,还介绍了在蒸汽中高温 (HT) 氧化后获得的结果。结果表明,与传统的未涂层材料相比,迄今为止开发的铬涂层可以显著改善高温氧化后的包层机械性能(即延展性和强度)。因此,开发的铬涂层为冷却剂缺失事故(LOCA)提供了显著的额外裕度,并且在一定程度上为超越 LOCA 的条件提供了显著的额外裕度。
此文档如有更改,恕不另行通知。本文和本文档所描述的产品受特定的免责声明的约束,请访问www.vishay.com/doc?91000©2023 Vishay Intertechnology,Inc。保留所有权利。www.vishay.com 1/2 SS34737551-2311
摘要纳米技术已经改变了工业腐蚀的限制,提供了增强治疗结果的机会,同时最大程度地减少了不良影响。这项研究的重点是氨基和墨托型耦合剂的组合,以制造含硫的聚合物聚合物涂层的钴铁液纳米纳米粒子,以作为抗腐蚀的潜在应用。在这项研究工作中,两种类型的聚合物有限岩纳米复合材料由组成的单体组成,该单体由一个组成的单体组成,其中无机纳米颗粒核通过包含上述单体共聚物在分子的一端组成的共聚物的层覆盖。两个系统(包括基于卵磷脂表面活性剂的微乳液系统和游离卵磷脂乳液系统)分别用于合成纳米复合材料,并分别将其标记为PF-A和PF-B。用X射线衍射(XRD)和动态光散射(DLS)分析表征准备好的样品。制备的PF-A纳米复合材料提供了一种形成的膜,在金属表面上具有出色的抗腐烂特性而无需产生污泥,而不使用磷或铬在1.0 m HCl溶液中与PF-B相比,在1.0 m HCl溶液中,最大最大腐蚀抑制效率为1.5 wt。基于纳米量的1.5 wt。基于纳米体重的量度(MG/CMG/cmg/cmg/cmg)。研究了操作参数,例如温度和抑制剂浓度。用原子力显微镜(AFM)证实了在钢表面形成的膜表面形成的膜,所获得的结果揭示了彼此紧凑和对齐的球状纳米球,形成了针对腐蚀性环境的抗腐蚀屏蔽单层。AFM图像验证了钢板表面上的膜形成,并且由于胺和默西托托类型的耦合剂的独特组合具有协同作用,因此两种样品的抗腐蚀抑制作用的实验发现与对照样品相比。
疫苗接种是预防或对抗肿瘤以及其他疾病最有效且最具成本效益的方法之一。1,2 有效的肿瘤疫苗应在佐剂的帮助下诱导广泛的体液反应和细胞免疫反应,包括 CD8 + 细胞毒性 T 细胞 (CTL)、CD4 + Th1 或 Th17 细胞反应。3 – 5 然而,最常用的佐剂铝盐(明矾)通常只能引发强烈的抗体反应,且以 Th2 为偏向,6 并且很少有获准用于人体给药的佐剂能够产生足够的细胞免疫反应。7 能够增强体液和细胞免疫反应的新策略仍然是治疗性肿瘤疫苗开发的重点。作为 FDA 批准的公认安全 (GRAS) 颗粒系统,酵母壳壁(β-葡聚糖颗粒)是